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In Part One the concept of particle order is introduced in its simplest form, 
sequential order. We show how sequential order, together with the general 
principles of S-matrix theory, (1) reproduces the main predictions of quark 
models with respect to mesons, explaining their quarklike spectrum 
without any need to assume the existence of quarks as constituent particles; 
and (2) provides a theoretical foundation for duality, in particular the dual 
unitarization (topological expansion) approach; and hence provides a 
unified description for a broad range of mesonic regularities such as the 
origin of conserved internal quantum numbers, the nature of the mesonic 
spectrum, the OZI rule and its violations, Regge pole dominance, exchange 
and/-spin degeneracy and their breaking, the Pomeron, etc. In Part Two 
this scheme is extended to all hadrons by a generalization of the concept of 
order. Stringent self-consistency requirements are shown to determine the 
specific form of the theory, including such features as topological color, 
baryon number conservation, and a set of generalized OZI rules. The 
spectrum is shown to consist of nonexotic mesons and baryons, and well- 
defined classes of exotic particles, all obeying the zero-triality rule. An 
attempt is made to understand the physical interpretation of order, which 
may well turn out to be a most fundamental concept in hadron physics. 

F O R E W O R D  

This paper is addressed to particle physicists in general. Some familiarity 
with at least the basic concepts o f  S-matrix theory is required, but  Section 2 
o f  Part  One recapitulates the main points needed to follow this paper  in 
detail. Other  than that, little specialized knowledge is needed, even about  
the dual topological unitarization approach  out  o f  which this work grew. 

In  correspondence with these goals, we have tried to avoid an excessively 
formal  approach,  and to bring out  the intuitive content  o f  our  arguments  
as much as possible. 

The material presented here constitutes original research except for 
Par t  One, Section 2, which is a review o f  some aspects o f  conventional  
S-matrix theory. Some of  the results o f  Par t  One have already been published 
in summarized form as Sections 2 and 3 o f  a review article in Physics Reports 
(Chew and Rosenzweig, 1978). Some o f  the results o f  Par t  Two were de- 
veloped in collaborat ion with G. F. Chew, J. Finkelstein, and J. P. Sursock, 
and have been published jointly (Chew et al., 1978), as well as reviewed in 
the above-ment ioned review article as Chapter  XIII .  

A G E N E R A L  O R I E N T A T I O N  

It is the purpose o f  this paper  to introduce a new fundamental  concept  
into particle physics: the concept  o f  order. 

Order  amongst  wha t?  Amongs t  the hadrons (incoming and outgoing) 
participating in a strong interaction scattering process. Thus, in a sense 
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that will gradually become clearer, a scattering process is an ordered process, 
with the participating particles standing in a well-defined order relationship. 

How do we represent the order formally? Since the framework of 
S-matrix  theory is general and elegant, and the only firmly established basis 
to stand on at present, we introduce order formally as an order between 
the particles of an S-matrix element (actually, T-matrix element, i.e., con- 
nected part). We represent the process order by a so-called process graph in 
which, roughly speaking, the vertices represent the particles of  the process, 
and the "'edges" (lines) connecting some pairs of  vertices represent the 
neighbor relationships between the particles. (More precisely, a particle is 
represented by a connected set of vertices that takes the form of  a tree-graph. 
But for baryons and mesons the above-stated version is true.) These edges 
will later be identified with the quark lines of  quark diagrams. Each particle 
type has a characteristic vertex representation: e.g., mesons will be seen to 
correspond to two-vertices: 

At 
and baryons to three-vertices 

A), 
etc. Each edge is oriented, and has one of three colors. Examples for a 
process graph are given in Figure I : 

A 

D 

Fig. 1 (a, left) and (b, right). Here the letters .4, B . . . .  stand for particles of a scattering 
process. 

To every ordered process there corresponds an ordered amplitude (by 
amplitude we mean specifically a connected part T, with the overall momen- 
tum energy 3 function extracted), analogously as to every physical process 
there corresponds a physical amplitude representing its probability amplitude. 
Thus an ordered amplitude is a function of  the usual particle degrees of  
freedom (tlpx/~l, t2p2/~2,. �9 t~Pn/zn) (where ti stands for the particle type of  
the ith particle, pi for its 3-momentum,/z~ for its helicity), but in addition 
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of the order between them, i.e., of their process-graph; thus, for example, 
~,e have 

What is the logical structure of the theory we are proposing? It is in 
essence an ordered S-matrix theory: we postulate the existence of an ordered 
S matrix in the above sense, satisfying the basic postulates of Lorentz 
invariance, cluster decomposition, unitarity, and macrocausality (with ap- 
propriate and natural modifications for the presence of order). We also 
make the bootstrap conjecture, namely, that the ordered S matrix is uniquely 
defined in terms of these axioms. We do not need to make any specific 
assumptions about the spectrum of particles, or the kind of order we impose, 
or the presence of internal quantum numbers, etc. All this follows from 
implementing internal consistency between S-matrix properties and order. 
One can then prove that general S-matrix properties like discontinuity 
equations, normal analytic structure, dispersion relations, crossing, TCP, 
Hermitian analyticity and extended unitarity, Froissart bound, etc., hold 
also for the ordered S matrix. But, in addition, the theory yields a wealth 
of other properties, in particular duality (including exchange degeneracy, 
/-spin degeneracy, Regge pole dominance), and quark-model properties 
(zero-triality quark-model spectrum, conserved additive quantum numbers 
corresponding to flavors, baryon number conservation, generalized OZI 
rules, etc.) of the ordered S matrix. 

Is the order of a process a measurable quantity ? No. The particle param- 
eters h, P~, tz~ continue to be the only measurable quantities. Hence the 
physical S matrix, which by its essence makes direct reference to observables, 
remains the same unordered object that we are familiar with. 

Then what is the relationship between the ordered S matrix and the 
usual physical (unordered) S matrix ? It seems that particle order is a charac- 
teristic of processes at a "deeper" level than the one we normally deal with 
in S-matrix theory (and in quantum mechanics in general), in which latter 
the degrees of freedom are all, in principle, measurable. Therefore, in order 
to  get from ordered amplitudes (describing the statistics of scattering pro- 
cesses at a level where order is a meaningful concept) to the physical amplitude 
(describing the statistics at the observable level, where order has disappeared), 
we need, in some sense, to "average out the order." How is this done? A 
simple first approximation to the physical S matrix, the so-called planar 
S-matrix approximation (PSA), which is unordered and can thus be compared 
to  experiment, can be constructed by adding (or, respectively, subtracting) 
all ordered amplitudes with a given set of particles. Its "planar" or "dual" 
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regularities (those regularities that go beyond those predictable from general 
S-matrix theory) have been approximately verified by experiment, and it 
seems that the PSA is quite a good approximation to the physical S matrix. 
However, the PSA is not exactly unitary, and thus is certainly distinct from 
the physical S matrix. A stepwise unitarization procedure, known as the 
topological expansion, is presumed to lead to the physical S matrix. (For 
the mesonic case of Part One, an ansatz for the topological expansion has 
been worked out in the context of dual unitarization, and applied with some 
success. For the general case of Part Two, an analogous procedure is being 
worked out by J. P. Sursock. We will not dwell on the topological expansion 
in this paper.) At a more practical and immediate level, order may also be 
seen as a device for achieving unitarity: the ordered amplitudes with their 
simple singularity structure are much easier to construct by bootstrap 
methods, and the topological expansion then yields the physical amplitudes 
with their full analytic complexity. 

If  order as such is not an observable, then what is the justification for 
its introduction as a fundamental concept? We feel that it is its promise 
to unify large parts of strong interaction phenomenology in a conceptually 
simple and economical scheme. The marriage of order and S-matrix theory 
appears capable of reproducing in a unified framework results heretofore 
only predicted in a piecewise fashion by a variety of models such as dual 
models or quark models. For mesons and their interactions most of the 
phenomenology has already been qualitatively understood on that basis, 
and for the other hadrons the outlook to do at least as well seems promising. 
Thus, although order as such disappears at the physical level, it leaves its 
ubiquitous trace in hadron physics. The quarklike structure and behavior 
of hadrons, in particular, may be understood as a manifestation of particle 
order, without the need to postulate constituent quarks as particles-that-are- 
not-really-particles, as in QCD. 

How did the idea of particle order arise and develop ? We were first 
led to consider it when we attempted to develop a unifying theoretical 
framework for the various calculational models for mesonic amplitudes 
known as "topological expansion" or "dual unitarization," which themselves 
grew out of the dual resonance model. We found that the concept of a 
sequentially ordered S matrix, corresponding to process graphs of the kind 
shown in Figure 1, lent itself ideally to that purpose. In Part One of this 
paper we describe this sequentially ordered S matrix and its properties. The 
close relationship between conventional (Rosner) mesonic quark diagrams 
and our process graphs became clear. The particles of the sequential S matrix 
were seen to be mesons. But all attempts to incorporate baryons into this 
sequential scheme failed. 

Encouraged by the success of the sequentially ordered S matrix in 
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describing mesons, and guided by the relatedness of quark diagrams and 
process graphs for mesons, as well as by the failure of sequential order to 
accommodate baryons, we tried to construct an S matrix with a generalized 
order in which any graph could occur as a process graph. However, such a 
general theory was found to be incompatible with other S-matrix principles, 
in particular unitarity. Self-consistency forced us to restrict outselves to a 
certain class of graphs (so-called reducible graphs) as possible process-graphs~ 
and also required the coloring of edges (with three colors). The outcome of 
this "order bootstrap" was a definite theory of a general ordered S matrix, 
which we present, including its derivation and properties, in Part Two. It 
represents the desired generalization of the sequentially ordered S matrix 
of Part One, in that it now also accommodates baryons and exotics. The 
process graphs of this general theory are still related to conventional quark 
diagrams, but they are more precise and richer in information in a crucial 
way; this helps to explain why the stubborn resistance of baryons and 
exotics to the conventional quark-diagram duality treatment yielded to our 
approach. 

What is the heuristic significance, the physical interpretation, of particle 
order ? At this point, we only speculate rather vaguely, that a "quark line" 
(i.e., edge) between two particles implies some form of direct causal relation- 
ship between the corresponding events. By events we mean the "actual" 
events such as sparks, bubbles, droplets, etc., that are interpreted as the 
manifestation of a particle, and indeed give rise to the abstraction of 
"particle." We will expand somewhat on this problem at the end of the 
paper. 

PART ONE: THE SEQUENTIALLY ORDERED S MATRIX 

1. INTRODUCTION 

1.1. The Historical Background 

1.1.1. The Dual Resonance Model. Ten years ago, a new approach devel- 
oped in strong interaction physics that has continued to play an increasingly 
important role: duality. Its phenomenological applications have encompassed 
an ever-growing range of phenomena of a breadth unparalleled by any other 
approach. But its conceptual foundations have remained hazy, and its success 
somewhat mysterious. We believe that the concept of particle order that we 
introduce here in a systematic way is the crux of the duality approach. How 
did the concept of the ordered S matrix arise out of duality ? To see this, we 
briefly review the development of duality, stressing those aspects that have a 
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bearing on our subject. We do not, in this Introduction, give specific refer- 
ences to original papers, but refer the reader to the review article(Chew and 
Rosenzweig, 1978) with its rich bibliography. 

We begin our account in 1968, when Veneziano discovered the dual 
resonance model. He wrote down a specific functional form that represented 
a four-point function for bosons without internal degrees of freedom; this 
was soon generalized to an n-particle amplitude. These amplitudes displayed 
many of the properties required by S-matrix theory, including Lorentz 
invariance, analyticity (except at an infinite set of  poles), pole factorization, 
crossing, and Regge behavior. In addition, the dual resonance model ex- 
hibited certain exact properties that corresponded to approximate regularities 
that were experimentally observed but never explained within the framework 
of  S-matrix theory; we refer to regularities such as linearly rising Regge 
pole trajectories, absence of  Regge cuts, and duality. The essential ap- 
proximation that permitted one to write down the amplitudes in closed 
form was the narrow-resonance approximation: The only singularities of 
dual resonance model amplitudes are real (and hence zero-width) poles; 
normal thresholds and other singularities are absent. This is also the main 
deficiency of  the model, causing it to violate unitarity in a manner that 
turned out to be very hard to remedy. 

The Veneziano four-point function is the sum of three terms: 

A(s, t) = dst(s, t) + Asu(s, t) + Atu(s, t) 

Each of  these three terms can be represented as a/3 function, e.g., 

I'[1 - c~(s)]. [ 1  - ,~(t)] 
A~t(s, t) = - ~  -F[1 -- ~(s) --- -~(~)] 

with ~(s) = s0 + ~'s, ~(t) = a0 + a't  and has a simple singularity structure: 
Ast has poles in the s and t channels but not in the u channel; As, in s and u; 
and Atu in t and u only. There is a formulation that represents this state of 
affairs nicely: the permutation ordered amplitude 

This symbol stands for that one of the three ~-fn terms that has poles in 
s12 = (pl + p2) 2 and s2a =- (P2 + 1)3) 2, i.e., in those channels that are adjacent 
with respect to the cyclic ordering of the particles in 
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Similarly, 

represents the term that has poles in sla and s32 (but not in s~2), etc. Note 
that only the cyclic order is significant: thus 

2 I 2 2 I 

etc. In this formalism we write the Veneziano amplitude as 

2 ~ 2 5 2 4 2 

The n-point function can be similarly expressed as a sum of (n - 1)!/2 
cyclically distinct permutation-ordered amplitudes, each of which again has 
poles only in adjacent channels. For example, 

2 5 

has poles in the s~2, s2a, s34, s4~, ss~, s~l, s12a, s2a4, sa45, channels, and only 
in these. 

This representability of amplitudes as a sum of permutation-ordered 
amplitudes with singularities only in adjacent channels is a central feature 
of the dual resonance model that in and of itself guarantees its "duality 
properties," even when the narrow-resonance approximation is relaxed. 
Here, and in this whole paper, we mean by "duality properties" those 
properties of the dual resonance model that (a) go beyond what can be 
derived in general S-matrix theory and (b) do not depend on the narrow- 
resonance approximation. This includes properties like absence of Regge 
cuts, exchange degeneracy, quarklike internal quantum number structure, 
/-spin degeneracy, and others. 

The internal (flavor) degrees of freedom, obeying SU(n) symmetry, 
were incorporated into the model by Chart and Paton by providing each 
permutation-ordered amplitude with an appropriate multiplicative factor 
that explicitly exhibited its functional dependence on these internal degrees 
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of freedom. The resulting mesonic amplitudes now displayed exchange 
degeneracy,/-spin degeneracy (Regge pole trajectories with I spins 0 and 1 
are degenerate), and an absence of exotic poles. Also, these amplitudes were 
interpretable in terms of the quark model. Since the Chan-Paton procedure 
of incorporating internal degrees of freedom with SU(n) symmetry was 
proved to be unique, all the above-mentioned features can be considered 
as inherent in the dual resonance model. 

The Harari-Rosner duality diagrams or quark diagrams illustrate 
graphically the quark interpretation of dual amplitudes. They were originally 
developed to diagrammatically represent the Chan-Paton permutation- 
ordered amplitudes with internal degrees of freedom; but their quark 
interpretation is obvious, and was immediately noticed. An example of a 
duality diagram is 

k- + 

s] v to 
k + / , , ~ - ~ - ~ \ r r  - 

It corresponds to the permutation-ordered amplitude 

The V inside the quark diagram stands for "Veneziano" and serves to 
distinguish the dual resonance model amplitudes from the "planar am- 
plitudes" that we will soon mention, and that are also represented by quark 
diagrams. Note that we are following the usual convention: 

refers to an amplitude in which all particles are incoming, whereas 

refers to A, B incoming, C, D outgoing. Thus, e.g., 

A~D A 
= B ~ 5  

B C 
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The fact that this amplitude can be written as a sum of  (pp) resonances 
in the K + K  - channel, or of (s~) resonances in the K - I / + )  channel is nicely 
exhibited, as is the connection between absence of exotics and absence of  
singularities in the u channel: such exotic resonances would correspond to 

in contrast to the nonexotic mesons 

1.1.2. The Unitarization of  the Dual Resonance Model:  The Topological  
Expansion. Now while the dual resonance model amplitudes gave a nice 
qualitative picture of  mesonic interactions, one obviously wanted to improve 
on it; the narrow-resonance approximation and the resulting lack of unitarity 
appeared to be the main source of  error. In the years after 1968, attempts 
were made to unitarize the model while preserving its many desirable 
features. In analogy with Feynman perturbation theory, the dual resonance 
amplitudes were considered as Born terms (tree approximation) in a per- 
turbation expansion whose higher terms (with loops) were to introduce 
resonance widths and normal thresholds. However, these higher terms 
turned out to be unrenormalizable, and hence the perturbation scheme 
appeared practically useless. 

Nevertheless, Veneziano noticed that if one added together only the 
planar perturbation terms (such a term is called planar if the corresponding 
Feynman graph can be drawn on a plane without any crossing of  lines, e.g., 

)v( 
is planar, whereas 

A ~ C  _ A ~ D  
B ~  'D B C 

is not; obviously, this sum is to be regarded as "formal," since many of the 
individual terms are divergent), then the resulting "planar amplitude" still 
had the same general singularity structure as the permutation-ordered 
amplitudes of the dual resonance model (i.e., the Born term): they had 
singularities only in adjacent channels. We have already remarked that this 
is the essential property of the dual resonance amplitudes that we wish to 
preserve, since it is the basis of its "duality properties." But now these 
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singularities included thresholds, and resonances acquired a width. Indeed, 
these planar amplitudes, denoted here by 

were shown by Veneziano to obey a unitaritylike discontinuity equation for 
adjacent channel cuts that he called "planar unitarity"; for example, 

E E 

B I D B D B D E,F F E,F,G G 

By ~E,F we mean 

d3p  ( d3p, 
~ ~: ~: f (pE2 ~rn--E2)l,2 j (p2 + m2),,2 

where E and F are summed over all particles, tz~ is the helicity of E, and 
m~ is the mass. Note that the order of the external particles (ABDC) is the 
same on both sides of the equation, and that internal particles do not "cross" 
like, e.g., this: 

i.e., the terms of the right-hand side are planar. Each of the other nonplanar 
perturbation terms could similarly be categorized according to the topological 
structure of its dual perturbation graph. For example, 

has a "cylinder" topology, 

a torus topology, etc. When the total (physical) amplitude was expressed in 
terms of these topological terms (each of which corresponded to the infinite 
sum of all the perturbation terms with a particular topological characteristic), 
then the resulting expansion was called the topological expansion. 

The advantage of the topological expansion over the perturbation 
expansion from which it was derived was that successive terms tended to be 
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reduced by a factor 1/N, where N is the number of flavors, i.e., ~3. Chew 
and Rosenzweig later discovered a more important convergence mechanism 
related to singularity structure (Chew and Rosenzweig, 1978, Chapter 6). 
By contrast, analogous convergence mechanisms are absent in the original 
perturbation expansion owing to the largeness of the strong interaction 
coupling constant. 

The sum of the planar amplitudes, e.g., 

A D A - - D  A - - C  

) C § C + ) C 
B ~ C  C B B - - D  

(for the four-point function), represented the lowest-order term of the 
topological expansion; if, as expected from the presence of a convergence 
mechanism, this could be considered as a fairly good approximation to the 
physical amplitude, then the approximate "duality" of the latter finally 
found an explanation in the exact "duality" of the planar approximation. 
Furthermore, given the planar amplitudes one could in principle calculate 
all the other terms, and hence the physical amplitude. All this appeared 
quite encouraging. But how did one actually obtain the planar amplitudes? 
Their perturbation theory definition as an infinite series of planar unitarity 
products of Veneziano amplitudes was useless (owing to the di~,~rgence of 
the individual terms), except as a guide to their general properties. 

Here was again the characteristic situation in strong interactions: 
owing to divergence problems, perturbation theory had to be considered as 
mathematical nonsense. And yet it could serve to elucidate general properties 
of the amplitudes, which could then be adopted, in bootstrap manner, as 
the starting point of a new theory. This is just what had happened in the 
late fifties when Feynman perturbation theory had helped to give birth to 
S-matrix theory. And here dual perturbation theory was to play a similar 
role again in the genesis of the new theoretical approach about to be 
described. 

1.1.3. The Bootstrap Approach to Dual Topological Unitarization. An 
important step in this direction was taken by Chew in 1975: he suggested 
that the "planar unitarity" equations, together with analyticity and Lorentz 
invariance, and the OZI rule be regarded as defining the planar amplitudes, 
analogously to the bootstrap conjecture in S-matrix theory. The calculation 
of the planar amplitudes would thus be accomplished by solving, at least 
approximately, this "planar bootstrap." The planar bootstrap, particularly 
in its Reggeized form, promised to be simpler than the usual bootstrap for 
physical amplitudes; this was due in part to the simpler singularity structure 
in the j plane, such as the absence of Regge cuts, and also the many 
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degeneracies that reduced the number of Regge trajectories that had to be 
taken into consideration. 

Assuming one could solve the planar bootstrap and calculate the planar 
amplitudes, then the topological expansion allowed the calculation of higher- 
order terms without solving any more nonlinear integral equations; this 
rendered the calculations practically feasible. 

And even without solving the planar bootstrap, one could instead 
make a reasonable ansatz for it, and calculate the deviations from planar 
regularities such as the OZI rule, exchange and/-spin degeneracy breaking, 
and the Pomeron trajectory. And indeed, the phenomenological work along 
these lines has been eminently successful in describing qualitatively, and 
often quantitatively, most of the features of mesons and their interactions. 
What makes all this particularly impressive is the absence of any free param- 
eters. These achievements have lent further evidence to the underlying ideas. 

The reader interested in learning more about this dual topological 
unitarization (DTU) program, as we shall henceforth call it, is referred to 
the aforementioned excellent review article by Chew and Rosenzweig (1978). 

The DTU program remained largely limited to mesons, attempts to 
include baryons having failed to a large degree. In Part Two, we will deal 
with this aspect of the problem in detail, and demonstrate how baryons 
can be included in DTU. 

Having now summarized the historical background, we proceed in the 
next section to discuss the problems to which this paper addresses itself. 

1.2. The Purpose of this Paper 

At this point DTU, in spite of its phenomenological success in the 
meson sector, could hardly aspire to the status of a theory, but appeared 
more as a collection of models and calculational methods related to one 
another by a common theme. 

The closest thing to a theoretical underpinning of DTU was represented 
by Chew's bootstrap approach based on the "planar unitarity" equations. 
And yet even this was still far from a coherent and self-contained theory. 
The problems began with the "planar unitarity" equations themselves. 
Without the background of dual perturbation theory (of which we now 
wanted to make ourselves independent), these seemed completely ad hoc; 
if they were to arise naturally out of the theory, it seemed that they should 
be understood as discontinuity equations derivable from some kind of 
unitarity relation. But which mathematical object was to be unitary? (In 
S-matrix theory it is the S matrix, and not the connected part that is unitary.) 
Were the planar amplitudes the connected parts of a sequentially ordered, 
unitary S matrix, and as such describable as permutation-ordered am- 
plitudes? Or were they to be described as quark amplitudes? Or were maybe 
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permutation-ordered amplitudes by their very nature describable as quark 
amplitudes, so that these two concepts merged? Did planar amplitudes 
factorize? Did they obey crossing? What was their singularity structure, 
and the corresponding discontinuity equations2 (Beyond pole and normal 
thresholds there was not even a hint.) Were planar amplitudes inherently 
mesonic, or could they be extended to baryons ? 

And some broader questions also posed themselves. Were planar 
amplitudes subsidiary quantities, derived from physical amplitudes by means 
of a particular approximation ? Or were they fundamental quantities, in- 
dependent from or even prior (in some sense)to the physical amplitudes? 
If so, what was their physical interpretation ? What was the unifying physical 
principle underlying duality and quark structure ? 

These, and many other, unanswered questions made it painfully clear 
that a more fundamental approach to DTU, and duality in general, was 
called for. 

As we worked our way through these questions, the mists of confusion 
gradually cleared, revealing a beautiful and simple picture: the whole 
structure of DTU appeared as a manifestation of a sequentially ordered, 
unitary S matrix. In particular, the quark structure of mesonic amplitudes 
could be understood on that basis. 

Particle order emerged as the crucial new concept underlying the whole 
of duality and the quark idea, the key for a remarkable theoretical unification. 
In all its simplicity and power, it had to be a truly fundamental concept! And 
in it lay dormant the germ of a generalization that was to allow the extension 
of the DTU program to baryons and exotics, and possibly provide the basis 
for a better understanding of the nature of the quark concept, and eventually 
for a general theory of hadrons. 

It is the purpose of Part One of this paper to introduce this new concept 
in the language of S-matrix theory; to construct a theory of the sequentially 
ordered S matrix, based on a set of basic postulates, and work out some of 
its properties; to show how it provides a theoretical foundation for DTU, 
and an alternative view of the quark concept; and to comment on some of 
its physical implications. 

We will not, in this paper, dwell on the connection between the ordered 
and the physical S matrix (i.e., on the topological expansion), except to 
introduce the simple "planar S-matrix approximation" to the physical S 
matrix and describe some of its properties. 

1.3. Outline of  Part One 

In Section 2 we recapitulate the main ideas of S-matrix theory as we 
need them. 

In Section 3, we construct the theory of the sequentially ordered S 



764 Weissmann 

matrix in as close an analogy with usual S-matrix theory as possible. We see 
how the main S-matrix properties survive, sometimes in modified form, the 
step to the ordered theory. But in addition, the ordered S matrix exhibits 
the crucial features of dual models, and we are able to identify our ordered 
amplitudes with the "planar" amplitudes of DTU. 

In Section 4, we develop a systematic understanding of the origin and 
role of internal quantum numbers in the framework of the usual, physical 
S matrix. 

In Section 5, we show how the theory reproduces the standard quark- 
model predictions with respect to the mesonic sector, and how the formal 
identity of quark diagrams and process-order graphs allows us to reinterpret 
the quark concept in a new light. The OZI rule is seen to be a feature of 
ordered amplitudes. 

In Section 6, we present the so-called planar S-matrix approximation, 
a set of unordered amplitudes obtained by summing ordered amplitudes 
over all orders, and find that they represent a reasonably good approximation 
to the physical S matrix; their main drawback is found to be their lack of 
exact unitarity. 

2. A BRIEF REVIEW OF S-MATRIX T H E O R Y  

2.1. Introductory Remarks 

S-matrix theory was developed in the late fifties and sixties, when it 
had become clear that quantum field theory, at least in the only form that 
people knew how to use it, namely, perturbation theory, was unable to deal 
with strong interactions. S-matrix theory was conceived as a child of quantum 
field theory (QFT), distilled out of a few basic properties of the QFT S matrix 
that were generally considered beyond dispute, without being weighed down 
with many assumptions of a more questionable nature that form the basis 
of QFT. It grew into a logically well-structured (axiomatized), beautiful, 
and general theory that provides essentially the only firm theoretical ground 
in strong interactions, besides providing an ideal conceptual framework 
within which to construct a self-consistent interpretation of quantum 
mechanics (Stapp, 1971). It is the only theory that unites quantum mechanics 
and special relativity in a self-consistent fashion. Moreover, it reduces to 
the Schrtidinger theory in the nonrelativistic limit (Blancenbecler et al., 
1960) and to the Feynman-Dyson theory in the weak-coupling limit (Chou 
and Dresden, 1967). Many subsidiary properties, and relationships between 
measurable quantities, were derived and experimentally confirmed. But since 
there was no obvious way to use the basic principles in order to numerically 
compute the S matrix, the question arose as to whether S-matrix theory 
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was actually a complete theory (which would imply that one could, at least 
in principle, use it to compute the S matrix numerically), or whether it was 
rather a conceptual framework, a language, but still lacking some dynamical 
principle (like the Lagrangian in field theory) to make it complete. The 
bootstrap conjecture takes the first stand by maintaining that the principles 
of S-matrix theory so restrict the possible structure of the S matrix as to 
admit only one solution: the actual strong-interaction S matrix. For example, 
unitarity (conservation of probability) ties all different regions of the S 
matrix inextricably together, and analyticity (macrocausality) determines a 
scattering function completely, given its value near any one point. Indeed, 
no model S matrix has been found that conforms to all of the basic require- 
ments; if it were, and had any adjustable parameters, the bootstrap conjecture 
would be disproved. [The bootstrap version of S-matrix theory also ted to 
a philosophy of science, new to the Western world, that stressed the role of 
wholeness, and self-consistency, as opposed to the traditional emphasis on 
analysis of a system into irreducible parts evolving in time according to 
fundamental differential laws (Chew, 1971).] Thus the spectrum of particles 
and their masses, spins, and internal quantum numbers, as well as all coupling 
constants, and indeed all scattering amplitudes, would follow from first 
principles. From the sheer complexity of the hadron spectrum it was apparent 
that an exact general solution of this bootstrap program surpassed human 
calculational ability. However, by relaxing one or the other of the basic 
postulates, it was possible to construct calculational models that gave good 
numerical results for those regions of the S matrix where that approximation 
was appropriate. The resulting situation is an ever-growing and often over- 
lapping patchwork of approximate models, linked together to a coherent 
whole by the underlying S-matrix theory on which they are all based. 

One stain in this picture developed, however, and contributed to the 
increasing isolation of S-matrix theory from the mainstream of particle 
physics: its inability to make any but a few very limited predictions about 
the spectrum, especially with respect to internal quantum numbers. Thus 
although the set of observed conserved internal quantum numbers, as well 
as the observed spectrum of particles, could be inserted by hand, it was 
done in a completely ad hoc manner. In practice, S-matrix theory seemed to 
provide few restrictions on the spectrum, far less to determine it. Baryon 
number, charge, strangeness, charm and their conservation, and distribution 
in the spectrum, and the approximate properties of SU(a) multiplet structure, 
the OZI rule, and the duality properties could of course all be expressed in 
S-matrix language, but they did not seem to follow from S-matrix principles. 
By contrast, a field-theoretical approach that developed in the sixties, based 
on the idea of a small set of truly elementary particles, called quarks, of 
which all hadrons are considered to consist, was able to predict some of 
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these properties though it yielded few other dynamical predictions. How- 
ever, it remains riddled with difficulties and internal paradoxes, and unless 
these can be resolved, it cannot aspire to the status of a self-consistent 
theory. One of the main paradoxes is that quarks enter the theory as particles; 
then a complicated set of calculations, valid only on that premise (and not 
actually performed till now) is to show that these quarks are "confined," 
i.e., not poles of the S matrix, and hence not particles, thus invalidating the 
original premise and calling the above calculations into question. And yet 
even "naive" nonrelativistic quark models, indeed especially these, yielded 
results that seemed beyond the calculational scope of S-matrix theory. This 
fact, coupled with deeply ingrained prejudice in favor of a theory based on 
a space-time framework and the idea of irreducible, elementary constituents, 
allowed the constituent quark idea to conquer the hearts and minds of 
most particle physicists, at the expense of the bootstrap S-matrix idea. Their 
general hope was that somehow a self-consistent, well-defined quantum 
field theory of elementary, contained quarks could be developed. The latest 
attempt in that direction is quantum chromodynamics (QCD); and while 
judgment should be withheld pending the outcome of the current effort, 
the internal paradox mentioned before seems built into QCD, together with 
the usual difficulties of any quantum field theory away from the weak- 
coupling limit. [The above-mentioned prejudice stems from our macroscopic 
experience, where the concepts of space, evolving time, and the constituent 
idea (A consisting of B and C) all make perfect sense; the evolution of 
macroscopic physics in the past 300 years, based, with so much success, 
on these concepts, has only led to the hardening of that prejudice. Most 
physicists, therefore, feel that the S matrix is not the whole story, that there 
must be an underlying space-time "mechanism." However, a closer examina- 
tion tends to Oiscredit this approach, and lends weight to the bootstrap 
approach (Iagolnitzer, 1978). 

In this paper we pursue a different approach to the duality and quark 
properties of hadron that is more in line with the S-matrix approach. As 
already mentioned in the general orientation, the introduction of particle 
order into the S-matrix framework holds out the realistic promise of a 
satisfactory theory of strong interactions. 

If this program succeeds (and QCD fails), has then S-matrix theory 
carried the day? The answer is but a qualified yes. For by introducing the 
mysterious and unobservable concept of order, we have subtly changed the 
very spirit of the theory. We have not merely added one postulate to further 
restrict the structure of the S matrix. The ordered S matrix is a new object 

with a richer structure, represented by a larger Hilbert space, the Hilbert 
space of ordered states. And very much in contrast to the physical S matrix, 
an ordered S-matrix element does not refer directly to any physical process, 
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but apparently to some underlying ordered process. [A physical process, 
as we use the word, is characterized by specifying fully the experimental 
apparatus, and the preparations and measurements made with it.] It is as 
if we had opened the door a crack to a hidden realm where this order is a 
meaningful concept. The realm itself is still shrouded in mystery, but we 
believe that there lie discoveries waiting to be made that may revolutionize 
our way of thinking about quantum mechanics and its significance. 

It might well be that subsequent, more matured versions of the ordered 
theory will renounce the use of S-matrix terminology altogether in favor of 
a more basic set of concepts applicable at that level. 

2.2. The General Framework 

We now present a very brief review of those aspects of S-matrix theory 
(SMT) that the reader should be familiar with to follow the rest of the work. 
We sketch the axiomatic structure, introduce some important concepts and 
notation, and describe various properties of the S matrix (SM) that can be 
derived. The S matrix referred to here is of course the usual, physical S 
matrix. The procedures outlined here will then, in the following sections, 
serve as a guideline for constructing an analogous theory for the sequentially 
ordered S matrix. The reader interested in a more thorough presentation 
of the material of this chapter is referred to Iagolnitzer (1978). 

In a physical scattering experiment m (usually 2) "particle preparation 
devices" and n "particle detecting devices," all of them macroscopically 
separated, interact in eventlike fashion. As the terminology suggests, one 
may imagine that these devices actually prepare or, respectively, detect 
material particles, although this is only a figure of speech; the reason it is 
chosen is that the ith device (more precisely, its effect on the event probability) 
can be mathematically described by assigning it particle degrees of freedom: 
h, P~,/x~. This description is effected by representing the ith device by a 
"state vector" in a Hilbert space spanned by the basis vectors [h, P~,/~}- 
Each particle type t corresponds to an irreducible representation of the 
Poincar6 group, and thus determines a mass m and a spin s. The momentum 
p and the helicity/~ are the representation parameters. To avoid introducing 
density matrices, we restrict ourselves here to "pure" measurements and 
preparations. A device preparing (or measuring) a pure state is often assumed 
to produce only one type of particle; hence the general state vector corre- 
sponding to it is of the form 

2-E ~"(P~)ItPl~} 

note that there is no summation over t (superselection rules). In practice 
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this mapping of the experimental device onto its mathematical representation 
is determined by experimental calibration (Stapp, 1971). 

The whole set of  preparation devices (or, respectively, measuring 
devices) is represented by a vector in the direct product space of  the individual 
particle Hilbert spaces, the "in" ("out") state vector: [i) (If)). The statistical 
correlations of this whole experimental system are described by means of 
a bounded linear operator S, defined on the Hilbert space of  "in" states 
(and hence also on that of the "out"  states). The probability of measuring 
If) if we have prepared [i) is given by [(f[Sti) l  2. 

If the ith device is translated by the 4-vector x, then the state vector 
representing it, say, 

has to be replaced by 

2-E ~(P)[tPtz) 

~ j -~--~- exp ( f d3p __~p.x)~.(p)ltpl~) i 

The above S-matrix framework is the essence of quantum mechanics; 
its validity has been established beyond reasonable doubt. On it one imposes 
four basic physical postulates to obtain the axiomatic foundations of SMT. 
These four postulates represent principles that are usually considered to be 
beyond dispute, so that the resulting theory may be considered as a firm 
bedrock in the otherwise rapidly shifting scenery of particle physics. 

Before we introduce these postulates in Section 2.3, we comment on 
the question of  the order in which particles occur in an SM element: this 
order is clearly physically irrelevant, since it merely corresponds to the 
arbitrary way that we have numbered the devices. For example, I tp~> may 
be the state vector corresponding to preparation device number 1, and 
similarly I t 'p ' t , ' )  the state vector corresponding to preparation device number 
2. We make the convention that [tp/z)|  [t'p'/~') denotes this state: the 
first vector in the product describes device 1, the second device 2. Then the 
vector It'p'/z) | ]tpt~) obviously describes a situation in which the device 
preparing ]tptz), namely, the one we called "number 1" before, has now been 
relabeled "number 2" and vice versa. Equally obvious, this relabeling does 
not affect the physical situation at all, so that the two state vectors I tp~) • 
]t'p'/~') and [t'p'/d) x [tp/~) must be physically equivalent. 

This in turn implies that any two SM elements differing only by such 
relabelings must be equal to within a phase factor, which can be shown to 
be + 1. Introducing the notation 
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we can write 

t v # t # �9 1 ~  ~ �9 t ! # # S(tlPlP~I> t2plpt2; tlPl/s 2P2/12) + S(I/p2/~2, t lPl / l l ;  tlPl//l> tlp2/~2) 

According to the spin-statistics theorem of S-matrix theory, the minus sign 
applies if both tl and t2 are fermions, the plus sign otherwise. For  pairs 
of identical particles, tl = t2, this leads to the usual Fermi and Bose 
symmetries. 

Because of this permutation symmetry of the S matrix, the appropriate 
multiparticle Hilbert space is not the full direct product space of the one- 
particle Hilbert spaces, but instead an appropriately symmetrized (or, 
respectively, antisymmetrized) contraction thereof, the Fock space. 

The origin of this permutation symmetry is that our language is too 
rich, and allows more degrees of  freedom than the physical situation war- 
rants. Specifically, the notation S(tlplt~, t2p2tz2,...) permits a distinction 
between "1" and "2" that has no counterpart in the physical system, which 
is characterized by the values of all the tpF's without attaching any index 
labels. 

On the other hand, we will find the formalism of S-matrix theory (SMT) 
ready-made to describe the sequentially ordered SM, where the order is 
significant. It is this perfect fit between the formalism and what it represents 
that makes many of the equations wieldier in the ordered theory. 

We now introduce some notation, and a few definitions. We will often 
let a complete particle specification tptz be denoted by letters such as 
A, B, C . . . .  ; e.g., S(A, B; C, D). 

A channel r is an (unordered), finite set of particle types: ~-= 
{tl, t 2 , . . . ,  t~). It is sometimes also used to denote the set of all states 
constructable from the particles of the set 7. 

A popular graphical notation for SM elements is the bubble notation: 

_=A C S(A,B;C,D) B ~ D  

and 

__A C S"(A,B;C,D) B ~ D  
When we do not wish to specify each particle separately, we write 

About the set of all particles, the spectrum of the SM, we assume the 
following: since we are concerned with strong interactions, and hence with 
hadrons, there should be no zero-mass particles. The spectrum is denumer- 
able, so that the particle-type index t may be considered an integer index. 
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And there is to be no accumulation point in the mass; i.e., in every finite 
mass-interval there are assumed to be only a finite number of particles. 
Initially, the S matrix is defined only in terms of  stable particles; but one 
can then extend the definition to include unstable particles. 

Having sketched the general framework, we now describe the basic 
postulates on which SMT is built. 

2.3. The Basic Postulates 

2.3.1. Poincar~ Invariance. The transitions [ ( f l S l i ) [  2 of  an experi- 
ment do not depend on the particular inertial frame in which it is performed: 
if every device is acted on by the same Poincar6 transformation, the prob- 
ability remains unchanged; this makes the theory conform to the special 
relativity principle. 

One can prove that the matrix elements themselves are invariant under 
Poincar6 transformations (without acquiring a phase factor): ( f  I S [ i ) =  

<AISli, >. 
Introducing a linear unitary operator L that represents the Poincar6 

transformation on the Hilbert space of  state-vectors, we can write 
( f l Z + S Z l i )  = ( f l S l i ) ;  L S  = SL. 

Amongst the consequences of this is the conservation of  4-momentum 
and angular momentum. In terms of S( t lp l~l ,  t2p2lz2 . . . .  ; . . .  t 'p~t/)  the 
former implies the presence of  an overall ~4(pl + P2 + . . . .  P~ - p[ . . . . .  
p ' )  factor. 

Another important consequence is that an n-particle SM element can 
be expressed as a function of 3n-10 relativistically invariant variables of  the 
Mandelstam type [e.g., S iy=  (pi + pj)2, So ~ = (p~ + pj + p~)2 . . . .  ], rather 
than of 3n 3-momentum component variables. 

For  strong interactions one postulates invariance under the extended 
Poincar6 transformations, i.e., including space and time reflection; this 
implies parity conservation and the time symmetry of  the SM. 

2.3.2. Unitarity. The physical principle underlying this property is the 
"conservation of probability" �9 

<ilSIn>l 2 = I 
n 

where ~ ,  denotes summation and integration over all possible states In); 
more explicitly, 

= ~ (m~ + p 2)i/2 
= 2  = " I z t = S t ~  

That is, if we prepare li), we have to find some In) (the basis corresponding 
to our detecting device) upon measurement: the probabilities have to add 
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up to unity. This, together with the linearity of S, is easily seen to imply the 
unitarity of the S operator: S + S  = S S  + = 1, or in terms of SM elements 

<ilSl.><.Is+I/> = <ilS+l,,><.ISlf> = <ilf> 

h h 

The state in) is called the intermediate state. 
In the bubble notation the following abbreviated notation is used for 

the unitary product: 

With this notation, unitarity reads: 

Here 

is the identity operator on the Hilbert space of  states; for example 

A ~ B I _ _ _ _ I  = 81Ate 8/+A/+B 2 E A 83 (PA -Ps ) -- A ~ B  

A - - . - . . F " ~  C = A �9 C + A-  -- D 
B ~ D B ~ D  B " - ' - ' - -  C 

etc. Often one is interested in a partial unitarity product where the inter- 
mediate state is restricted to a particular channel ~-. This is denoted by 

or if we make the channel explicit, e.g., 

' 2  

For example, for an elastic 2 - +  2 process below 
threshold, unitarity reads: 

the three-particle 

Y. B B, 
~l,le 

A ~ A" A ~ B ~ = + 
B ~  B' B ' - - ~ ' - A  ' 
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The symmetry factor of 1/2 has to be included to avoid overcounting. We 
mention this explicitly because this feature will disappear for the ordered SM. 

This seemingly innocuous postulate of  conservation of  probability is 
of great power, imposing stringent conditions on the possible forms of  the 
SM and implying many secondary properties of  importance. It leads to 
nonlinear integral equations that provide a mathematical basis for the 
bootstrap. 

2.3.3. Cluster Decomposition. We now introduce the independence pos- 
tulate that two (or more) scattering experiments, set up at a great distance 
from one another (in space, or in time, or in both), should not influence 
one another appreciably. Specifically, assume a system involving m prepara- 
tion and n detection devices. Now select ml of  these preparation devices, and 
nl of  the detection devices (without loss of  generality, we can assume that 
it is the first ml or, respectively, nl of  them). We say that we have divided 
the devices (or, respectively, the particles) of the system into two clusters, 
cluster 1 consisting of the above-mentioned rn preparation and n detection 
devices (particles), and cluster 2 of  the remaining m2 = m - ml preparation 
and n2 = n -  nl, detecting "devices (particles). The corresponding state 
vectors are denoted by 1il} and If1) for cluster 1, and li2) and If2) for cluster 
2. In order to express the independence postulate, we now translate cluster 1 
by the 4-vector oa, where a is an arbitrary 4-vector, and cr is a real number 
that we will take to infinity. Denoting the thus translated state vectors by 
[i~ =} and I f ~ ) ,  the independence postulate reads: 

lim ( i ~ l  | (i2lSlfl ~} | IA} = l im (i~[slf~}(i2lSlf2) 
r o0 r 00 

--- < i l l S I A > < i 2 1 S l A >  

where the last step is due to translation invariance. (Actually, one can only 
infer 

, - ~  i ~ i S oa lim [ (1  121 If1 IA)I = l(i~lSIfl}ll<i21Slf2)l 

but it can be shown that this implies the said equation, without phase 
factors.) 

Owing to the validity of  this postulate, the introduction of  the so-called 
connected parts Sc of the SM turns out to be very useful. In the bubble- 
diagram notation they are denoted by 

or, respectively, 

Q 
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The connected parts are implicitly and recursively defined by the cluster- 
decomposition equations that break up an SM element in all possible ways 
into connected-part products. 

For example, 

which defines - - @ - - -  

C A ~ D 
'D = B D + B . - - - - . ~  D B ~ C  

which, in conjunction with the above equation defines 

etc. Note that because of the stability of particles, objects like these: 

and these: 

etc., do not occur. Thus, for example, 

and 

More complicated examples of cluster decomposition equations are 

where the sums are over all topologically different ways of connecting the 
fixed external particles to a set of bubbles: e.g., 

D A yr~l F 
+ cA::Z:Z:IE F E + ~ E + 

B �9 F B �9 D e I �9 
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For fermions one must exercise caution with the sign of  a given term (for 
each crossing of fermion lines there is a minus sign). 

For  

I I 

there is an analogous cluster decomposition into connected parts: 

The usual convention here is to include a factor - I  in the definition com- 
pared with the analogous 

equations. 
These connected parts have the important property that when a subset 

(cluster) of its particle states is translated to infinity as above, then the 
matrix element tends to zero: 

lim <i7 1 | <i2[Sclf~ ~) | lYe> = 0 
1~--* oO 

implying that except for an overall momentum-energy conserving 84()  
factor, connected parts no longer contain 3 functions or their derivatives, 
and are thus true functions, not merely distributions. These functions (i.e., 
the connected-part matrix elements with the d 4 factor removed) are called 
T-matrix elements, scattering functions, or simply amplitudes. 

Cluster decomposition and connected parts have an interesting in- 
terpretation: 

describes the probability amplitude that the physical process [i) -+ I f )  takes 
place as a unified, causally connected process. By contrast, 

describes the probability amplitude that the physical process takes place 
at all, whether as a causally connected process, or in several clusters of 
mutually disconnected processes. The cluster decomposition equations simply 
express the well-known quantum mechanical principle that when a process 
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can be thought of as occurring in different ways ("paths"), then the amplitude 
of  the process is the sum of  the amplitudes corresponding to these different 
ways. Here the different "ways" are just the various causal connectedness 
patterns in which the scattering event can take place. 

It is noteworthy that this concept of causal connectedness is not strictly 
speaking an observable property: when the parameters of  a scattering process 
are such that it can actually take place in more than one connectedness pattern, 
then it is impossible to determine by measurement whether a particular 
individual event took place in one pattern or the other. For  example, if in the 
2 --~ 2 elastic scattering process 

A_M--S-}.__ A' 
8 - -1_7_ .h - -  B' 

the wave functions $(A>(pA, /~a) and ~b(A~(p~,/x~) have a common support 
(i.e., there exists a p and a/~ such that ~b<A)(p,/,) # O, and ~b(A')(p, /~) # 0), 
and similarly for ~b (m and ~b <B'~, then the process can proceed both through 

and through 

A ~ A '  
B "---k,..j.)~'-" B' 

A . A' 
B ~ B  ~ 

and there is no way to decide which one it was for any individual event. 
But in spite of  this nonobservability of  connectedness, it is an extremely 

useful concept. We mention this point particularly because we will soon 
introduce another nonobservable concept about which very similar remarks 
can be made: particle order. 

Although it is the S matrix that has a direct physical interpretation 
and hence is unitary, it is nevertheless the T matrix that has the simple, 
elegant properties (e.g., analyticity, crossing, pole factorization, etc.) and 
plays a central role in SMT. Indeed, once the unitarity of  the S matrix has, 
with the help of cluster decomposition, been recast into discontinuity formulas 
for the T matrix, the S matrix practically vanishes from the scene. 

2.3.4. Macrocausality and the Normal Analytic Structure. The principle 
of  macrocausality states that all transfers of  energy-momentum over macro- 
scopic distances that are not ascribable to stable particles (in accordance with 
classical ideas) give effects that are damped exponentially with distance. 

To express this more precisely, let us regard again the same situation 
as we did for the definition of connected parts: a scattering system divided 
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into two (or more) dusters, and let us translate cluster 1 by aa. Then we 
saw that 

lim <i~1 | <GITIf~> | ] f~>  = 0 

Now macrocausality states that this convergence (falloff) is exponential, 
unless the cluster parameters, in particular the momenta, are such that a 
particle could classically be exchanged between the clusters. A particularly 
simple example is a 2 -+ 2 (non-forward-elastic) scattering: if the two "in"  
beams are translated in such a direction that they no longer intersect 
(classically), then the scattering amplitude has to fall off exponentially with 
the translation parameter of  cr. [To be precise, the width of  the Gaussian 
wavepackets employed (in momentum space) should be shrunk by a factor 
of ~1/2 at the same time as we translate one cluster away by ~ra, for reasons 
too involved to explain here. This amounts to taking h - +  0, and thus to 
the classical limit.] This fact is closely related to the use of the Yukawa 
potential in the nonrelativistic approximation. 

We have seen that a less than exponential decay of  the amplitude (as 
the duster separation is increased) is only possible if one or more particles 
can be exchanged between the clusters; this is also true if there are more 
than two clusters. Now, for a given " in"  and "ou t"  channel and given 
clustering of these particles, such an exchange of  particles between dusters, 
as ~ ~ oo, is possible only for those points in momentum space for which 
the corresponding classical multiple scattering process is possible. For  
example, for 

tl t4 

t 3 ~  t 6 

with the clustering (124) (356), the exchange between the clusters of a particle 
t with mass m is possible only if the momentum k = p~ + Ps - P4 available 
to it is parallel (with positive coefficient) to the translation ~ra, and on mass 
shell: k 2 = mL These are exactly the conditions under which the classical 
double scattering 

), ..,.,,/, 

t 2 

can take place, where the two interaction points are separated in space-time 
by the 4-vector a. 

The above diagram is called a Landau diagram. In general, to every 
classical multiple scattering process there corresponds a Landau diagram. 
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Further examples are 

and 

tl ~~~*~t 3 

' , . . ../. 

From a Landau diagram one can read off directly a set of equations called 
Landau equations whose so-called positive-a solutions represent the only 
points in momentum space where the corresponding multiple scattering 
process is possible. The set of all such points in general form a real analytic 
submanifold (of codimension 1) of the physical region called a positive-a 
Landau surface. So, to summarize: a given process tz + . . .  +tm--~ t~ + 

�9 � 9  + t~ can only take place as a multiple scattering process on those excep- 
tional points of the physical region that lie on the positive-a Landau surface 
of that multiple scattering process�9 

Now, for all points in the physical region of a given process that do 
not lie on any positive-a Landau surface, no exchange of particles between 
clusters is possible in the quantum mechanical case as cr --~ oo, and so macro- 
causality demands that the amplitude fall off exponentially with ~. But then 
a generalization of the Fourier theorem asserts that the scattering amplitude 
is analytic at that point of the physical region. Thus one can prove that the 
scattering amplitude is analytic in every point of  the physical region that does 
not lie on apositive-~ Landau surface. This does not prove that the amplitudes 
are singular on their positive-a Landau surfaces; no statement is made by 
macrocausality about the analyticity at these points. But as we will soon see, 
one can show from unitarity that the amplitudes do indeed become singular 
there. From macrocausality one can also deduce a set of so-called + iE rules 
that specify how to analytically continue the amplitudes around Landau 
singularities. Thus the analytic structure of amplitudes in the neighborhood 
of their physical regions is fully determined from first principles. 

Outside the physical region the singularity structure is less well known�9 
A "principle of  maximum analyticity (of the first kind)" is sometimes invoked 
there, that states that an amplitude is analytic everywhere except where 
singularities are demanded by unitarity. But where that is has to be deduced 
by a rather involved iterative process, so that the analyticity structure outside 
the physical region has not been worked out in all details. 
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The most important and best-known Landau singularities are those 
corresponding to Landau diagrams describing double scattering processes: 
(a) Poles, arising from Landau diagrams like 

t, . ~ , / t ,  

t 2 

with one internal particle. For this example, as we have seen, the Landau 
surface is described by s~24 = mtL (b) n-particle normal threshoMsingularities, 
arising from Landau diagram like 

or 

t 4 

t ~  t5 

q- \ t  6 

t! V .,..- t4 

For these examples, the Landau surface is described by s124 = (my + m~,,) 2, 
or, respectively, s12a = (mr, + mr-) 2. 

2.3.5. The Bootstrap Conjecture. This is not a postulate on a par with 
the others, but a conjecture about the theory as defined by those postulates. 
The bootstrap conjecture holds that there is only one (nontrivial) SM that 
satisfies all the above postulates: the physical one. Hence the SM is 
theoretically well defined and determined by these postulates, without the 
need for any further dynamical principles. Everything, all the masses, 
coupling constants, amplitudes, and symmetries flow from self-consistency 
requirements; there are no free parameters. 

While there are some good arguments for this conjecture, and some 
partial bootstrap calculations have been quite successful, it is not undisputed. 
It serves more as a general philosophy and a methodological guideline than 
as an explicit logical ingredient of theoretical proofs or calculations. 

Having now presented the axiomatic foundation of the SMT, we 
describe, in even less detail, some of the more important properties of the 
SM that can be derived from it. 
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2.4. Some  Important Properties of  the S Matrix  

If  one writes down the unitarity equation 

and substitutes for each of the factors its cluster decomposition into con- 
nected part products, then one obtains an equation expressing unitarity in 
terms of connected parts alone. Examples are 

and 

B - B E = 

C C F 

A O 

(3) 

(3) 

(9) 

In the second example, the sums are again over the different ways one can 
attach the external particles to the bubbles, the number under the sum 
indicating in how many different ways that can be done. It is noteworthy 
that the unitarity equation 

that yields the second equation also yields (from its disconnected parts) the 
first equation, which was originally obtained from 

And this pattern repeats itself for higher unitarity equations. This provides 
a nice consistency test for the theory. 

It is well known that normal threshold singularities give rise to cuts in 
the complex plane of the corresponding channel variable. For example, for 
the amplitude 

A c B@D 



780 Weissmann 

there is a two-particle normal threshold corresponding to the Landau 
diagram 

The location of this singularity is, according to the Landau equations, 
saB = (rn~ + rnF) 2, and can thus be expressed in terms of one channel 
variable alone (this is no longer true for higher Landau singularities), making 
it simple to represent as a point in the complex saB plane. The + & rules 
derived from macrocausality then tell us that if we take 

A 

at some value sAs < (ms + me) 2, and analytically continue it to some value 
SAB > (ms + me) 2 by circumventing the singular point (ms + me) 2 in a 
+ & direction 

I m SAB 
~i~Gth of oncllyiic c o n i ' i n u o t i o n _  

. . . .  I l l  5 .  _ _ _  

" ~ R e  SAB (m E + FnF )+ 

then we obtain the physical amplitude 

If, on the other hand, we continue on a - &  path, we obtain a different 
function; the difference between these two analytic continuations is called 
the discontinuity around the EF normal threshold. One often represents this 
analytic structure by drawing a cut from the threshold along the real axis 
to + oo, which defines a physical (Riemann) sheet. Then the discontinuity 
is the difference of the amplitude (on the physical sheet) above and below 
the cut. 

The example of the normal threshold is instructive in that all Landau 
singularities except for poles similarly give rise to cuts and corresponding 
discontinuities. 

It is possible to derive a general formula that expresses the discontinuity 
around any physical-region Landau singularity, in the neighborhood of that 
singularity, in terms of physical-region amplitudes and quantities derivable 
from them. For the simplest case, the normal threshold discontinuity of a 
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2 ~ 2 process, the answer is well known and is given directly by the con- 
netted-part unitarity equation 

I 
I 

d i s c  A 
B D A C B 

i 8 > c < D  
I 

A A C 

B 

where we have introduced the customary notation 

I 
I 

I 
I 

for normal-threshold discontinuities. 
Other discontinuities are not obtained as easily directly from the 

unitarity equations, but there is a general procedure for deriving them, 
using unitarity and cluster decomposition repeatedly. For discontinuities 
corresponding to Landau diagrams with not more than one internal particle 
connecting any pair of vertices, such as 

o r  

the discontinuity is simply obtained by replacing each vertex of the Landau 
diagram by the corresponding plus bubble 

and integrating over intermediate particles lines in the usual way (as in 
unitarity products). For example, the discontinuity of 

B 
C 
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around the triangle singularity 

A D 

B x~E 
C F 

is given by 

C z F 

I f  there are two or more internal particle lines connecting a pair of  
vertices, then an additional factor 

has to be inserted on that set of  lines, where S~-1 is the inverse operator of 
the restriction of the operator S to the channel r. For  example, the dis- 
continuity of 

A 

around the discontinuity 

is given by 

B D 

which can be shown to equal the usual result 

A c 

B D 

The derivation of these discontinuity formulas also demonstrates that 
amplitudes actually become singular on all positive-c~ Landau surfaces, a 
point that was left open as long as we only considered the effect of 
macrocausatity. 

Although these discontinuity formulas are at first only derived in the 
vicinity of the singularity, they can be extended in most cases to the whole 
cut. For amplitudes with six or less particles this has been generally proved 
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(Coster and Stapp, 1969a, b); for amplitudes with more than six particles 
there are some singularities where certain difficulties appear. 

With certain weak assumptions about the analytic behavior of amplitudes 
away from the physical region one can prove so-called generalized unitarity 
equations that formally resemble unitarity equations, but are valid in non- 
physical regions of momentum space, e.g., 

A 0 

C ~ E  C F 

is valid in the nonphysical region (mr + mt,) 2 < S4Bc < (mA + me + mc) 2. 
A particularly important example is the equation 

B D B D 

valid below the lowest two-particle threshold. It expresses the property of 
Hermitian analyticity, according to which 

A 

and 

are analytic continuations of one another around the lowest threshold 

Im S 
when we a n a l y t i c a l l y  con t inue  

f r o m  S I to S 2 in the 
way shown, we obtain : : ~  

. . . . . . .  oSt 

Re S . . . . . . .  " S z 

Combined with the time invariance of amplitudes this implies their real 
analyticity, and the frequently encountered substitution of 2 Im T for the 
discontinuity of T. 

A particularly important conclusion can be drawn by writing down the 
discontinuity equations for Landau diagrams with two vertices connected 
by a single internal particle, e.g., 

x E 
B 

F 

B " E = B E 
C F .... F 
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from which we can conclude that in the neighborhood of SaBD = mx 2, 

T(A,B; D,X)T( X,C ; E,F) 
T(A, B, C; D, E, F) = SaBD -- mx z 

Thus T(A, B, C; D, E, F) has a pole at SaBD = m x  2, and the residue of this 
pole factorizes into two factors, each an appropriate scattering amplitude 
itself. This important property of pole faetorization establishes the identity 
of particles with factorizable poles of the SM. This may be seen by examining 
a double scattering process in space-time, with the two scattering regions 
macroscopically separated; only the pole contributes significantly to this 
process, and the pole factorization permits the interpretation of a particle X 
being produced in one region, propagating to the other region, and being 
absorbed there (Stapp, 1965). Complex poles can be interpreted as unstable 
particles, pole factorization now allowing the definition of amplitudes with 
unstable external particles, with properties similar to those of amplitudes 
with only stable particles. 

Dispersion relations for amplitudes follow from their analyticity and 
the use of Cauchy's theorem. The one-variable (fixed-t) dispersion relations 
are well known. There is a generalization of these to n-particle amplitudes 
known as the Bergman-Weil dispersion relations (Stapp & Wright, 1968). 
Nothing more is needed for their proof than the analyticity structure of 
amplitudes on the physical sheet. They express the amplitude anywhere on 
the physical sheet in terms of its physical-sheet discontinuities. 

It is well known that to each particle t there is a particle i, called its 
antiparticle, with the same mass and spin, and opposite internal quantum 
numbers; and that any two amplitudes related by crossing, i.e., by converting 
an "in"-particle t into an "out"-particle i, are analytic continuations of one 
another. For example, the two amplitudes 

A E 

and 
A g 

(and indeed any other amplitude related to them by a series of crossing 
operations, e.g., 

A ~ L  B 
C 
E 5 

o r  

D E 
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are obtained from one another by analytically continuing, say, the former 
function from its physical region to the physical region of the process 
ABC-+ Dff,). Thus, there is one analytic function, denoted by 

A IE 

B ~  c D 

that describes all these processes: when all the 4-momenta are real, then it 
represents a physical-region scattering amplitude, namely, of the process 
whose '"in" particles are those with positive energies and the "out" particles 
those with negative energies. 

The above statements about the existence of antiparticles and the crossing 
properties of amplitudes can be proved from the principles of SMT, together 
with some technical assumptions about the analyticity structure of amplitude 
outside the physical region. 

The TCP theorem, which states the invariance of the SM under the 
TCP-operation follows from crossing all "in" particles into "out" particles and 
vice versa, and showing that this operation takes one back to the starting point. 

The spin and statistics theorem is also a general result of SMT: it states 
that integer-spin particles obey Bose statistics, half-integer spin particles, 
and Fermi statistics. 

Amongst other properties that can be proved are various asymptotic 
bounds limiting the growth of amplitudes as channel invariants s tend to 
infinity. The most well known is the Froissart bound for the four-particle 
amplitude, stating that the amplitude cannot grow faster than s -  1 In s as 
s --~ ce at fixed t. 

We conclude this rapid review of S-matrix theory with the remark that 
with a further analyticity assumption (analyticity of the second kind) one 
obtains Regge theory, with its wealth of phenomenological predictions. 

In the next section we construct a theory of the sequentially ordered 
S matrix along parallel lines. Each axiom and derived property mentioned 
here will have its (appropriately modified) analogue there. But additional 
properties (the "duality" and quark properties) will follow there that have 
no analog in the unordered case. 

3. THE SEQUENTIALLY ORDERED S MATRIX 
A N D  ITS P R O P E R T I E S  

3.1. Ordered Processes and Ordered Channels 

In Section 1 we outlined the motivation for regarding ordered 
processes and the corresponding ordered amplitudes. Now we proceed to 
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actually construct an S-matrix theory of sequentially ordered scattering 
processes. 

3.1.1. Process Graphs. By a sequentially ordered set S we mean one 
on which is defined a relation between two elements called the successor 
relation " - - / '  with the following properties: 

(a) For every element t s S, there exists exactly one t ' ~  S such that  
t -+  t ' .  t '  is called the successor  of t. 

(b) For  every element t ~ S, there exists exactly one t " e  S such that  
t "  -+  t. t"  is called t h e  p r e d e c e s s o r  of t. 

(c) For  every pair of  elements t, t '  e S there either exists a finite sequence 
of elements from S ( t l ,  t2, �9 � 9  t~) such that t --, tl, tl --~ t2, �9 �9 t~ --~ t ' ;  or 
there exists a finite sequence (t~, t '  ' ' 2 . . . . .  t,~) such that t '  --~ t~, tl --~ t2 . . . . .  
t" --~ t; or both these sequences exist. I t  can easily be shown that if S is a 
finite sequentially ordered set it can be represented by the following graph: 

t t ~ l t 5  

tz~. ~ t 4 
t 3 

We now assume that every scattering process is sequentially ordered, 
i.e., the set of  particles participating in the process is assumed to be a 
sequentially ordered set. The graph of the above type that represents this 
order is called the process-order graph o r p r o c e s s  graph .  For  brevity we usually 
omit  all the arrows but one, so that a typical process graph would look like 
this: 

t s ~  t4 
t l ~ t 3  

t 2 

To each such ordered process corresponds an ordered amplitude 

t~ 

interpreted as its probability amplitude. Note that we are using the same 
notation for ordered amplitudes as for physical, unordered amplitudes, 
except that of  course now the order in which the particle lines are arranged 
around the bubble is significant; since we will henceforth only be talking 
about  ordered amplitudes except where explicitly stated, there should be no 
reason for confusion. Also, we will by convention always arrange the particles 
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in a counterclockwise orientation, so that we may drop the arrow altogether 
in the notation for amplitudes. 

Note that an ordered amplitude 

is not merely a function of  the particle degrees of freedom G, Pa, IzA, t~ . . . .  , 

but also of  the cyclical order in which the particles t occur: 

Therefore there will 

A D A D 

B C C B 

be ( n -  1)! different ordered n-particle amplitudes 
corresponding to a given set of  n external particles, compared with only 
one physical amplitude. 

Inherent in the concept of  process order is the notion that the process 
be connected  (in the sense of "connected part");  the relative order of  dis- 
connected parts would not be defined. It is for this reason that we associate 
an ordered amplitude or connected  part with an ordered process, rather than 
an ordered S-matrix element. Intuitively speaking, both the connectedness 
of order and the connectedness we have encountered in usual SMT (as 
"connected part") refer in some sense to causal connectedness. But whereas 
this connectedness is, in usual SMT, taken to be global and amorphous, we 
now introduce form into this connection by assuming each particle to be 
connected to specific other individual particles; in this part of  the work the 
connectedness pattern is assumed to be sequential; in Part Two it will be 
generalized. 

3.1.2. Ordered Channels and Channel Graphs. Some of the particles of  
an ordered process will be "in,"  the others "out ."  Whenever the " in"  
particles form a connected structure by themselves, i.e., are not interspersed 
with "out"  particles (whence the analogous statement will be true for "ou t"  
particles), we call the ordered process an ordered transition. Thus 

i n L ~ ~  

in *~.J  out 
in 

is an ordered transition, while 

is not. 

in.in 

out ~out 
in 
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Ordered transitions play an important role because the complete set 
of ordered amplitudes that ultimately describe all ordered processes can be 
defined in terms of them alone: after we have proved crossing, we will be 
able to analytically continue the ordered transition amplitudes to other real 
momentum-energy regions where they describe general ordered processes; 
e.g., 

i n . i n  crossing ~ o u t . i n  

in ~ ~ ~out inl T ~out 
out out 

As a result there is, as we will show, one analytic function 

t~ 

describing all processes with the process graph 

tz1~ t4 
t 3 

regardless of which channel is involved, i.e., which of the particles are " in" 
and which ones "out ."  But we are ahead of ourselves; we merely meant to 
explain why it is possible to construct the theory starting with a subset of 
all ordered processes, namely, the ordered transitions. 

Possible it may be, but why desirable? The reason is the following. 
In SMT, and in quantum mechanics in general, a process, and hence its 
amplitude, is fully determined by specifying its initial state and its final 
state. This is the basis for the Hilbert space formalism, with its expression 
for the amplitude ( l i T [ f ) .  And although, e.g., crossing suggests that a 
scattering amplitude, in some deeper sense, describes a whole and in- 
divisible process, nevertheless the Hilbert space formalism, dualistic as it is 
with its stress on initial and final states, successfully describes processes at 
the physical level. This dichotomy between initial and final states is of course 
based on the experimental dichotomy between preparation and measurement. 

For ordered processes, such a description in terms of separate initial 
and final channels is in general no longer possible because the order of the 
process cannot in general be specified in terms of the separate orders of the 
initial and final particles. Already the simple example 

tj (in)~t 4 (out) 

t z (ou t) ='~ t3 (in) 
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demonstrates this clearly: there is no way that we can specify an initial 
ordered state and a final one separately that would allow us to reconstruct 
the process-order graph. Thus it would seem that the Hilbert space formalism, 
the hard core of quantum mechanics as we know it, is not applicable to 
ordered processes. 

However, for the special class of processes that we called ordered 
transitions it is, as we shall see, possible to specify the process by specifying 
" in"  and "out"  channels separately. It is this circumstance, coupled with the 
fact that ordered transition amplitudes can be extended by analytic con- 
tinuation to apply to all ordered processes, that allows the construction of an 
SMT of  ordered processes. 

How are ordered transitions specified by their channels? When we 
bisect the process graph of  an ordered transition into its " in"  and "ou t"  
components, we obtain two linear directed graphs representing the order 
of the " in"  or, respectively, "out"  particles separately. We call these graphs 
channel graphs: 

o u t  
tl ( i n ) l f ~ 5  bisection 

tz(in)L i ) ~' t z 
t 3 t 4 

t3(in) " ~ l  t4(~ 

(in) (out) 

Thus one obtains channel graphs from a process graph by bisection. A 
channel graph, together with the individual particle parameters, t ,p ,  IL, 
specifies an ordered state ; together with the individual particle-type parameters 
t, alone it specifies an ordered channel. 

Given the ("in" and "out")  ordered states of an ordered transition, 
we can immediately reconstruct the process graph by simply sewing the two 
channel graphs together in the unique way such that the two channel orienta- 
tions match. This resewing of a channel graph obtained by bisection of a 
process graph yields back the original process graph: 

�9 - - ~, t i t 5 

t z ~ t z 

t3 t4 4 

Thus indeed we see that an ordered transition can be fully specified by 
separate specification of its channels, as claimed. Bisecting and resewing 
are inverse operations. 

This state of affairs is by no means to be taken for granted. Had we, for 
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example, tried to construct an SMT of ordered processes without orientation, 
i.e., with process graphs like this 

tl (*~)t 5 
t2 ~ v J t  4 

t 3 

(without arrows), then we would have failed: even for ordered transitions, 
the initial and final channel graphs, say 

(obtained as before through bisection of the process graph) do not uniquely 
define the process graph, since it is not clear how to sew them together; 
one of the two possible ways yields the original process graph, the other one 

tl~ t3 

t 2 "~5  f 4 

This criterion of unique resewability will play an important role in Part Two 
in determining the most general particle ordering upon which one can 
construct an SMT. Here, we see that the orientation of the edges of  a se- 
quentially ordered process graph is an essential, necessary feature of  the 
theory. And since, as we will see, the existence of a nontrivial charge-con- 
jugation operation, and of baryon number and other additive conserved 
quantum numbers, is closely related to the fact of edge orientation, we 
begin to realize the powerful results that can be generated just from self- 
consistency requirements. This will become much more apparent in Part Two. 

Following a notation analogous to that of usual SMT, we denote the 
amplitude 

f'A (i n) ~E (out)~ 
T \ B (in)l j/D(out)) 

\ C(in) / '  

corresponding to an ordered transition by 

A 

Here the bar above the particle symbols signifies the transformation 

(t, p, if) (f, p, - i f ) ;  at this point this is not more than a convention, which 
will, however, be justified when we prove crossing. 
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A nondiagrammatic notation follows from the fact that 

T 
c 

can be written as 

-= T(tA_PAFA , �9 �9 . ;  � 9  �9 TEP__[E ~- E, t D PDP-D ) 

This notation is outwardly identical with the one employed in usual SMT 
for amplitudes. But here the order of the particles in the argument of the 
flmction T is allowed to express the channel order. Thus this argument 
order, redundant in usual SMT, and eliminated there by imposition of 
permutation symmetry, comes to its right in ordered SMT. 

A result of this fortunate circumstance (that we can employ the same 
formalism for ordered as for physical amplitudes) is that many of the 
equations and proofs of usual SMT continue to hold for ordered SMT, as 
will be seen. 

In terms of Hilbert space language the difference between physical and 
ordered SM is that the former is defined on a Hilbert space of states in 
which the n-particle direct-product spaces have been contracted to their 
symmetric or, respectively, antisymmetric subspaces, whereas the latter is 
defined on the full (and therefore ordered) direct-product space. 

3.1.3. Ordered S Matrix.  So far we have introduced only the ordered 
connected parts or amplitudes (these are, as we saw, the basis objects of our 
theory and describe the probability amplitude of an ordered process); but 
if we want to introduce the postulate of (ordered) unitarity, we will need the 
ordered analog of the S matrix, defined by its cluster decomposition into 
ordered connected parts. 

Since unitarity yields a host of important properties for the ordered 
amplitudes (like pole factorization, discontinuity formulas, crossing, etc.) 
we are loath to discard it as a tool. But in order to include it in our arsenal 
we have to pay the price of introducing an artificial concept, namely, the 
ordered S matrix, which neither, as the physical S matrix, describes the 
probability amplitude of observable processes, nor, as the ordered connected 
part, or for that matter the physical connected part, describes the probability 
amplitude of hypothetical elementary processes. Indeed, the only reason we 
introduce it is to be able to postulate its unitarity, which can then, via 
cluster decomposition, be converted into the desired properties of the 
connected parts. 
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We denote the ordered S-matrix elements by 

and the matrix elements of the inverse S" by 

Again, there can be no confusion with the physical S matrix, since all 
S matrix elements will be assumed to be ordered unless specifically 
mentioned. 

3.2. The Basic Postulates of Ordered S-Matrix Theory 

Upon the general ordered S-matrix (OSM) framework described in the 
previous section we now impose four postulates analogous to those of  
usual SMT, as described in Section 2, which are assumed to fully define the 
theory in bootstrap fashion. 

3.2.1. Poincar~ Invariance. It is introduced in formally the same way 
as for the physical SM, and implies the same consequences, since a Poincar6 
transformation does not affect the order of the particles of a process, but 
only their individual momenta and helicities. 

3.2.2. Cluster Decomposition. We postulate the independence property 
as for the physical SM, but with the modification, natural if we consider the 
interpretation of order as causal order, that the clusters consist of adjacent 
particles. 

Specifically, given an ordered SM element 

Aj ..-S~.H ~ B k  
Am I,. ~Bm 

choose an arbitrary subset (cluster) of  adjacent particles; if it is to correspond 
to a nonzero amplitude, it must contain both " in"  and  "out"  particles, so 
its general form is {A1 . . . . .  Aj; B1 . . . .  , Bk}, with 1 < j < m, and 1 < k < n. 
Call this cluster 1, and its complement {Aj+I . . . .  , Am; Bk+l , . . - ,  Bn} cluster 
2. Then if we translate the particles of  cluster 1 by aa, where a is an arbitrary 
4-vector, and a a real number, then as cr ~ 0% according to the independence 
postulate, the ordered SM element factors into the product of  the two 
separate cluster SM elements: 

lim (A~ ~.. AYI | <Aj+~...AmlSIBoaBg a.. .Bg ~5 | IB~+I. . .B,5 

= (A ..A,ISIB . (3.1) 
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When the two clusters do not consist of adjacent particles, then each 
subset (of a cluster) that consists of adjacent particles may be considered 
as an independent duster as far as the formulation of the independence 
postulate is concerned. Thus this case is reduced to the case of p (p < 2) 
clusters of adjacent particles, which we treat later. 

Next, we define a duster decomposition of SM elements into sums of 
products of connected parts. Our guiding principle in constructing the 
cluster decomposition will be that the left-hand side of the independence 
postulate should tend to zero when a cluster of its particles is translated to 
infinity: 

lim <A~ . . . .  A~I | <A~+I...A,,IScIB~ . . . .  B~ '~) | IBk+l- .-B,)  = 0 (3.2) 
a"*B 

The cluster decomposition will certainly express the ordered SM dement 
as a sum of products of connected-part matrix elements. Any particular 
term of the sum, being a product of l connected parts, corresponds to a 
particular of the external particles into 1 ordered clusters. The question is 
only which of all such possible partitions are "legal," i.e., actually occur in 
the cluster decomposition: the specification of the set of legal partitions 
defines the cluster decomposition. 

The correct rule for duster decomposition, i.e., the one which, together 
with the independence postulate (3.1), guarantees the above equation (3.2), 
turns out to be the one that one might well guess intuitively. 

Let us consider partitions into two clusters first. Which ones are legal ? 
The answer is: those where the two clusters each consist of adjacent particles, 
i.e., the so-called adjacent partitions, obtained by bisection of the process 
graph. And since any cluster consisting of either only "in" or only "out"  
particles yields a zero connected part, we consider only those adjacent 
partitions where each cluster contains both "in" and "out"  particles. 

To illustrate this with an example, regard the cluster decomposition of 

A z Bz 
A3 

into 1 = 2 terms: 

corresponding to 

A3 A d I ~ B d B 3  

A I | B I 

A3 
A4 

, o r ,  

A I --...-,,-~..-.-- B I 
A2 " J  B2 

A 4 "~ B 4 
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corresponding to 

and 

corresponding to 

AAz•F•BIBz 
A 4 B 4 

At ~ BI 
A 2 B z 
A 3 B~ 
A 4 �9 B4 

A I f-'~-~ B l 

This exhausts the possibilities, since, e.g., 
i 

Az.. (_ / - " "  ~ BZ 

A 3 ~  BB 

A4 B4 
would lead to 

A I 
A z ~ BI 
A3 B~ 
A 4 ~ B3 

which is zero because 

AI ~ BI 

A 2 

is zero (all particles are assumed stable). 
For l = 3 the legal partitions are those obtained from the l = 2 parti- 

tions by further adjacent partitioning of either of the two clusters. For 
example, in the above example the partition 

Ai 

A3 ~ B~ 
A4 B 4 



Particle Order: A New Fundamental Concept 795 

leads to 

and  

while 

leads to 

and 

while 

leads to 

and  

AI : B I 
A z �9 B 2 
A3 ~ B3 
A4 B4 

AI �9 BI 
A 2 B 2 

A 3 ~ B 3 
A4 I : B4 

A I Bf 

A 2 ~ B~ 

A# 

AI : BI 
A 2 ~ , B 2 
A 3 ~  B~ 

A4 B4 

A I BI 
A2 ~ B2 

A3 ; B3 
A 4 B 4 

AI B B 
A2 ~ Bz 

A3 B3 
A4 ~ B4 

AI �9 B 1 
A 2 8 2 

A 3 ~ B~ 
A4 " . B4 

A I B i 
A 2 C ~  ~ B 2 

A3 " B3 
i I 

A 4 B 4 

Of course each term of a kind only has to be counted once. The I = 4 terms 

are obtained from the l = 3 terms in a similar way, etc. 
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The complete cluster decomposition of 

A I 
Az 
A 3 -- 
A 4 ~  

now reads 

A 2 Bz 
A~, B~ 
A 4 B 4 

~ ~ B  I 
B2 
B~ 
B4 

A i - , , , , , - ~ - ' ~ i ~  B I A I = BI 

A 4 B 4 A 4 B4 

A l i B I  AI Z ~ ~ [  BI 

A 3 B3 
A 4 B4 

AI -----T-~-- B i AI �9 BI 
A z ~ B 2  + A z ~  B2 

A 3 " B3 A 3 ~ B~ 
A4 " B4 A 4 " B4 

A I -_ B I AI �9 BI 
A 2 �9 B z A2 ,, B 2 

+ A3 
+ 

0 B ,  A ,  : B 3 
A4 B4 A4 B4 

Note that there are far fewer terms than in the corresponding duster de- 
composition of the physical S matrix, for which there are 4! = 24 terms 
corresponding to just the one term 

I 

alone. Another simple example of ordered cluster decomposition is 

Al ~ B i  Ai ~ AI Bl 
= ~ + : 

A z "~"1.~J~ B 2 A 2 A 2 Bz 

The general result can easily be formulated in terms of " in" and "ou t"  
channels: to cluster-decompose a given ordered SM element 

A z - -  ~ B  z 
A 3 ~  

Am ~ Bn 

choose an integer l, such that 0 < l < min (m, n). Partition the "in"- 
channel graph into l connected, nonempty subgraphs in an arbitrary way; 
do likewise with the "out"-channel graph. Then combine the top "in" 
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channel with the top "ou t"  channel to form a connected part, do likewise 
with the second "in"  and "ou t"  channels, etc., to form the product of l 
connected parts. Do the partitioning in all different ways, and for all integers 
l with 0 < l < min (m, n), and add all the terms together. In equation form 
this instruction reads, withjo --- 1, ko -= 1, Y~ - m, kz --- n, 

(A1, As . . . .  , AmISIB1, B, . . . . .  B, )  
mln(m,n) m - l  n - I  r a - t + l  n - t + l  m - l + 2  n - l + 2  m - 1  n - 1  l - 1  

t=O Jl =1 kl =1 ]2=]1 +1 k2=~I+1 ]3=]2 +1 k3=k2+1 ]I-I kl-1 f=O 

• (Aj,+~Aj,+2...Ay,+IISoIBk,+~Bk,+~...Bk,+I) (3.3) 

This is the general equation of  ordered cluster decomposition. It may 
be regarded as defining the ordered S matrix. [By contrast, in physical SMT 
it is the S matrix that is regarded as the primary object, since it is directly 
connected with observation, and the cluster decomposition is regarded as 
recursively and iteratively defining the connected parts.] 

We now prove the claim that the independence postulate (3.1), in con- 
junction with the equation (3.3) that we have chosen as our cluster decom- 
position, implies the crucial property (3.2). The proof, similar in its basic 
idea to the proof  of  the analogous statement in usual SMT, proceeds by 
induction. First, we assume that each cluster consists of one " in"  and one 
"ou t"  particle each. Employing the notation (A~[ | (A2ISIB~ ~) | IB2) - 
( A ~ A 2 [ S [ B ~ B 2 )  for the SM element whose first cluster has been translated 
by the 4-vector aa, equation (3.3) then reads 

hence 

lim ( A ~ A 2 [ & [ B ~ B 2 )  = lira ( A ~ A 2 ] S [ B ~ B 2 )  - (Ax[S]B~)(A2[S]B2)  = 0 
ff ~ oo G-+ oo 

by virtue of  equation (3.1). Thus (3.2) is true for this case. 
Now assume that (3.2) is true for a (r - 1)-particle SM element. Now 

regard ( A t . .  "Am[S]BI"" "B,) ,  with m + n = r. By (3.3) we have 

( A ~ o A  ~ ~ ~ ~ o .  . ~ . . 8 . )  1 2 " " A ]  A]+,.. .Am[S~]B1 B2 "Bk Bk+l �9 

~ .AmISIBg ~.. .B~Bk+~ . .  . B , )  = (A~ . . . .  A] Aj+~..  

- (A~ . . . .  A ~ [ S ,  iB~ ~.. . B ~ ) ( A ] + ,  . .  .AmtS, IBk+~ . . .B , )  - R~ - R2 

where R~ consists of  all terms of  the cluster decomposition of  

( A 1 . . . A , ~ ] S I B 1 . . . B , )  
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whose partitions into clusters correspond to subpartitions of the partition 
(A1. . .Aj;  BI...Bk)(Aj+,~..-Am;Bk+~...B~), and R2 consists of all other 
terms. 

Now, as a -+ 0% R2 tends to zero, since each of its terms contains as a 
factor at least one &-matrix element with some particles translated to infinity 
and others not, so that this matrix element, containing less than r particles, 
becomes zero by induction hypothesis�9 

On the other hand, (A~ a.. .A~ISJB~ . . . .  B~ a) + R1 is, by virtue of 
(3.3), equal to 

�9 f f a  (Ya  . <.,4~ a'" A j  ISIB, ...Bg=><& + 1 . . . A , , I S I B , , + ~ . . B , , >  

= <&. . .&IS IB , . . . n~><&+l �9  

so that 

�9 ~ . . . . . .  = . - .  B . )  lim (A~ a. .Aj Ay+z A,,IScIB~ a" .Bk Bk+l 
f f ~ a o  

= . ~ . , 4  � 9  lim (A~ c'. .Aj Aj+,,..A,,,[S[B~ . . . .  Bk Bk+~ 
f f ~ c O  

- <&. . .A , IS IB , . . .B~><A,+~. . .A , , IS IB~+, . . . g ,>  = 0 

by (3.1). This proves (3.2). 
A generalization of (3.1) from two to p clusters follows from stepwise 

application of (i). Let 

<ilsl f> -- (i,I | </=[ |  | (i,,JSIA> | If=> |  fp) 

and let a~, a2 , . . . ,  ap be a set of p distinct 4-vectors. Then the generalized 
independence postulate reads 

lim (i~%1<1~%1 �9 | (g'~,,Is[f~%> |  | If~,'~,,) 
a ~ o o  

= <i~lSIA><idsIf=>...<*~lsIL> (3�9 

This property of S implies, in exactly the same way as above, the generaliza- 
tion 

lim (i~a,] |  | (i~,'~l&lfg'q> |  @ If~,%> = 0 (3.5) 

An equation similar to (3.5) is valid, too, when the clusters are not 
composed of adjacent particles. 

Consequently, one can in the usual way deduce that the ordered ampli- 
tudes, i.e., connected-part matrix elements without the overall 8~( ) factor, 
do not contain any 8 functions or their derivatives, and are thus not merely 
distributions, but true functions�9 

The fact that we were able to deduce the desired equation (3�9 from 
a reasonable independence postulate (3�9 for the ordered SM indicates 
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that we have defined the latter in terms of  ordered amplitudes by reasonable 
cluster-decomposition equations (3.3). 

3.2.3. Unitarlty. We postulate the unitarity of the ordered SM; 
S + S  = S S  + = 1, or in terms of  matrix elements: 

<ilS[n><nlS+lf> = <ils+l"><"lSlf> = < / I f >  

which is formally identical with the unitarity of the physical SM. 
The difference between physical and ordered unitarity lies hidden in the 

difference between the physical (symmetrized) and the ordered Hilbert 
space. Thus, e.g., for the ordered Hilbert space, we have 

( A ~ .  . . A ~ I B , .  . . B , )  = ~ , ( A ~ I B , ) ( A 2 I B 2 ) .  . . ( A m l B r , )  

(rather than a sum over all m! permutations terms) and 

A 1 A 2 An 

That is, the sum-integral over all intermediate states implies a sum over 
all different channel orders. 

In the diagrammatical notation, unitarity reads 

or, e.g., 

A~ . t~ B~ A I 

t l , t  2 A 3 �9 ~ J B~ t~,ta,t 3 A3 

I Q 0 

Bz 

B 3 

A~ Ba 
A2 ,* B2 

i 

A 3 B 3 

Note that the intermediate lines never cross, since the intermediate ordered 
states on both bubbles are the same, implying the same channel order. 

3.2.4. Macrocausality. In usual SMT macrocausality was seen to imply 
that an amplitude is analytic in the neighborhood of the physical region 
except possibly on its so-called positive-~ Landau surfaces, where it could 
become singular. Each Landau surface corresponds to a distinct multiple 
scattering process, symbolized by a Landau diagram in which each vertex 
represents one of the simple scattering processes of which the multiple 
scattering process is composed. 
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Here, both the simple and the multiple scattering processes are ordered. 
Therefore, we first have to examine how simple ordered processes can 
combine to form a composite (multiple scattering) process, and how the 
order of this composite process is determined by the orders of the constituent 
processes. 

We proceed recursively: first we consider how two simple processes 
join to form a double scattering process. The simplest case is when the 
double scattering consists of two processes linked by exchange of a single 
particle, which we describe by the diagram 

A~ B 3 

A 3 B i 

This corresponds to the presence of a pole. In this case, the joint process 
is again ordered and has the process graph 

A i - B 3 

A~ 0 Bz 

A 3 BI 

obtained by erasing the internal particle X and joining the two process 
graphs by their free edges in such a way that the orientations match: 

Aj B 3 Ai B3 A, B~ 

AzO~-- -x~B z . A z ~ ' ~ O B  2 - A 2 0 B  z 

A3 BI A 5 BI A3 BI 

Let us call this procedure the composition of the two process graphs to the 
composite process graph. This process graph is said to represent the global 
order of the composite scattering process. 

If, instead of one particle, several particles are exchanged between the 
two processes, then the resulting double scattering process is again ordered 
if it corresponds to an ordered channel exchange, i.e., if the exchanged 
internal particles are adjacent and occur in the same order in both processes; 
the order of the joint process is again obtained by erasing the internal 
(exchanged) channel and joining the two process graphs by their free edges 
such that the orientations match. For example, the global order of 
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is 

whereas 

A 2 Y "~ B I 
o r  

-....A~__ 2J-7 
do not have a global order. The first of these examples corresponds to the 
presence of a normal-threshold discontinuity. 

When there are three or more ordered subprocesses linked together to 
multiple scattering process by exchange of particles then the resulting joint 
process is ordered if and only if we can legally compose (according to the 
rules described above) pairs of process graphs step by step until we have 
obtained one single process graph; when this is possible, this process graph 
represents the order of the joint process. This case corresponds to one of the 
higher Landau singularities (e.g., triangle or box singularities). It is easy to 
see that if this stepwise composition can be carried out in any order of 
succession, then it can be carried out in every order, and yields the same 
result. 

The criteria for the stepwise fusion to be possible, and thus for the 
joint process to be ordered, are as follows. 

(a) All the external particles of a subprocess must be adjacent and 
"outside," i.e., not contained in any polygon formed by internal 
lines (for example, 

/ / /  ~. 
/ /  % 

- /  \ ~  
x /  / 

A 

z z 

is excluded, because A, B, C are "inside"). 
(b) The set of particles exchanged between any two subprocesses must 

be adjacent and in the same order in both process graphs. 
(c) The whole diagram must be drawable on a plane without any 

crossing of intermediate particle lines. 
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We illustrate these rules by a few examples: 

D 

/ \ \  
/ \ \ 

/ 

~ c 

has the global order 

has the global order 

E 

B C 

F E 

x z z D 

/ / W \ / 
/ / \ / 

/ / 
x / \ t / 

B A cC)F 
D E 

E 

A%L '~ -  v . . . . . .  ~ " ~ "  - ' - - ~ - ~ / B  
W W 

has the global order 

B A 

D E 

On the other hand, the following multiple scattering processes have no 
global order: 
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/ \ / \ 
/ \ / \ 

A z~ 

Ex U F ~  ~ f / /  
/I" \ / / /  //g. 

B w ~ " -  C w 

803 

So far we have merely stated these composition rules without proof. 
In fact, they are generated by unitarity, which demands the presence of 
singularities wherever multiple scattering processes with a global order, as 
just defined, can take place; this will be seen in the next section. 

Whenever a multiple scattering represented by a graph L has a global 
order, represented by a process graph G, then at appropriate momenta the 
ordered process with process graph G can proceed as a multiple scattering 
of the type L. Therefore, according to the ideas of macrocausality, L may 
be interpreted as the (ordered) Landau diagram of that process. And then 
the same procedure used in usual SMT, and outlined in Section 2.3, leads 
to the conclusion that an ordered amplitude A is analytic everywhere in the 
neighborhood of the physical region except on the positive ~ Landau surfaces 
(whose locations are determined in the usual way, by the Landau equations) 
corresponding to Landau diagrams with a global order identical to that of 
the amplitude A. 

An alternative notation for ordered Landau diagrams, which corre- 
sponds to the notation for usual (nnordered) Landau diagrams, is possible 
here (but not for the generalization of Part Two): 

C 

D 

D z 

stands for 

/ \ 
F 
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Note that here the order of the particle lines around a vertex is significant, 
whereas in the usual Landau diagrams it is not. 

An important difference between physical and ordered amplitudes is 
that the latter have far fewer singularities because only Landau diagrams 
with the appropriate global order can contribute. Let us consider the most 
familiar and important Landau singularities, namely, poles such as 

and normal threshold singularities such as 

or, respectively, 

cannot have the global order 

A6 
Ai ~'~A5 

A2 " ~ A  4 

Given an ordered amplitude, such as 

Ai A s 
A2 ~ A5 
A 3 A 4 

then the general results presented above imply that this amplitude has poles 
and normal threshold cuts only in adjacent channel invariants. For example, 
it will have a pole in s612, corresponding to the ordered Landau diagram 

AI .,~ ~r 
.~ '~x  /As 

A:i A~A4 

but never in s13: the corresponding Landau diagrams, such as 

/ x . , .<.As 
A3 A 4 
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The + iE-rules for ordered amplitudes are identical to those for physical 
amplitudes, as are the Landau equations that determine the locations of the 
Landau singularities. 

3.3. Properties of the Ordered S Matrix 

In this section we show how various properties of the physical S matrix 
carry over into the domain of the ordered S matrix. In many cases, the 
detailed proofs need not be presented here since they proceed formally 
analogously to those of physical S-matrix theory; in these cases we comment 
mainly on the differences and modifications. 

3.3.1. Unitarity Relations for Connected Parts. In order to obtain these 
we write down the unitarity equation 

i ~ f  = i ~-'~/. f I I 

and substitute both SM elements by their cluster decomposition into products 
of connected parts. Then, in the resulting equation, we regard separately 
all the terms with the same 8-function structure, i.e., the same connectedness 
structure: these constitute the desired unitarity equations: 

B D B " D " 

. A=EmK  C + A ~ = C 
D B ~ D 

- -  = 

+ ..... ~ ID B " 

Then the first term in parentheses represents one of the unitarity 
equations, while the second is in this case trivial. Another example is 
the following: 
A _i_.riI--~ f~--~___ D A , D 
B ~ + ~L_~E = B �9 E ; ,  
C F C F 

C C C 

continued overleaf 
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(. ~ F  ~ " o o ~ _ ~ = ~  : ) ~ ~ 
�9 -- -4- + = 

�9 F F F 

- ,.-~--~ . J - - ~ - i ~ ~ -  ~ ~ ~  
E - -  B --  B E B ! + C ! D + ED 

C F C F C F 

~ ~ ~ ~ ~~!) ~i ~ ~ i~  
B ~ E  + B ~I E -- + E -- B 
C F C ~ F  C - -  " F C ~ 

~ A : D A * D A . O~ 
--B E + B E - B E) : O 
c =:Er--E~- F C:~V c=~EE= F 

Since each of the terms in parentheses has a different S-function structure, 
they must vanish separately. Note that the second term in parentheses 
reproduces the unitarity equation of our previous example. This constitutes 
a consistency test that the ordered SMT passes in this case as well as in all 
others examined. 

The general form of  such a unitarity equation is 

Z i~~f2 
 J J JJJJJJJJJJJJ ,  

where the sum is over all the decompositions of  the initial and final channels 
into clusters preserving the order and yielding a connected product. Here, 
as in the above examples, - ...................... stands for a set of noncrossing particle 
lines, i.e., for an ordered channel. And 

in , fn 

i.e., the external particles occur in the same order on both sides of the 
equation. 

3.3.2. Identification of Ordered Amplitudes with the "Planar Amplitudes" 
of DTU. Since the connected-part unitarity equations we derived above 
coincide formally with the "planar unitarity" equations obtained in dual 
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perturbation theory for the planar amplitudes, we may identify our ordered 
amplitudes with the planar amplitudes of DTU, and consider the theory of 
the sequentially ordered S matrix as providing a theoretical foundation of 
DTU. In Section 5 we will show that ordered amplitudes can also be repre- 
sented as quark amplitudes, which will complete the identification. (DTU 
is often expressed in terms of quark amplitudes.) 

3.3.3. Discontinuity Equations. Just as for physical amplitudes, the re- 
peated appropriate use of the above unitarity equations yields, for any given 
ordered amplitude and one of its Landau singularities (corresponding to 
one of the ordered Landau diagrams with the appropriate global order), 
an expression for the discontinuity of the amplitude around the singularity 
that is valid at least in the neighborhood of that singularity, and often 
outside it, too. The procedure is formally identical with that used for the 
physical amplitudes, and so we will not comment on it further; it also yields 
the same result, namely, the discontinuity formulas described in Section 2.3. 
Of course, the operators occurring in these equations now have to be 
interpreted as operating on the ordered Hilbert space. 

For example, for the two-particle normal threshold discontinuity of the 
amplitude 

A 

corresponding to the Landau diagram 

>+<i 
this formula yields the well-known expression 

B - - - , , . L . z T ~ , ~  D 

For the 

singularity of 

J y 
c F 

A D 
B E 
c 
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the discontinuity is given by 

A D 

B E 
C C y F 

The extension of these formulas outside the immediate neighborhood 
of the appropriate singularity might possibly be valid for all discontinuities, 
because for the physical amplitudes the intractable Landau singularities 
examined till now all corresponded to nonplanar Landau diagrams, and 
these do not occur in the ordered case. This simplification of the analytic 
structure of ordered amplitudes might prove to be very important both 
theoretically and for practical purposes. 

3.3.4. Pole Factorization and the Particle Pole Identity. Exactly as for 
physical amplitudes, the discontinuity formulas for pole singularities, e.g., 

disc (B A D A D 

C 

i.e., disc. T(A, B, C; D, E, F) = T(A, B; D, X)T(X, C; E, F)3(SasD -- mx2), 
from which it follows that T(A, B, C; D, E, F) has a pole at SASD = mx 2 
whose residue is factorizable in the usual way. Thus the particle-pole identity 
continues to hold for the OSM, and scattering events dominated by this 
pole can be interpreted as a double scattering. This is a particularly crucial 
result since it permits us to interpret the OSM as a bona fide S matrix. 

3.3.5. The Physical-Region Analytic Structure of Ordered Amplitudes. 
While ordered macrocausality states that physical-region singularities can 
occur nowhere but on the positive-a Landau surfaces it does not demand that 
amplitudes actually become singular there. That they do become singular 
there is implied by the discontinuity equations (i.e., by unitarity and cluster 
decomposition), as the example of the pole, in the last paragraph, illustrates. 
Thus the physical-region analytic structure of the ordered amplitudes 
(location and type of singularities of the otherwise analytic amplitudes, 
discontinuity formulas, and + i~ rules) is fully determined from first prin- 
ciples, as was the case for physical amplitudes. 

As far as poles and normal thresholds are concerned, the main difference 
between physical and ordered amplitudes lies in the fact, mentioned earlier, 
that ordered amplitudes have these singularities only in adjacent channels. 
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3.3.6. Dispersion Relations. Due to this analytic structure, the same 
kinds of dispersion relations are valid as for physical amplitudes. But due 
to far smaller number of cuts, they are considerably simpler to handle. 

3.3.7. Antiparticles and Crossing. We introduced the concept of process 
order (and corresponding process graphs) without, up to this point, really 
making full use of it: we have described ordered transition amplitudes as 
transitions between ordered channels whose order was described by channel 
graphs; a complete description consisted of specification of the individual 
particle parameters h, P~, tz~ and the initial and final channel graphs 

tl t~ 

t3 t~ 

The additional information contained in the process graph 

t( 
t I ~,-'~t~ 

t2 k 2t~ 
t 3 ~ t~  

by placing all the particles, "in" and "out," on a common line and thus 
defining a joint order of "in" and "out" particles has so far remained 
redundant. However, there have been strong hints that there is a justification 
for the concept of process graph: e.g., the concept of particle adjacency, 
which has played such an important role, is natural and easy to formulate 
in the framework of process graphs, but not so in the channel-graph 
formalism, where such seemingly different configurations as the following 
four: 

t 
t 

are lumped together under the label "adjacent." 
But now that we will present the property of ordered crossing, the 

process graph will finally appear in its full significance. Ordered crossing 
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states that all ordered transition amplitudes with the same process graph are 
analytic continuations of one another (in the usual sense of crossing, where 
incoming particles with positive energy become outgoing antiparticles with 
negative energy). 

Thus to every process graph, e.g., 

E 

there corresponds an analytic function, denoted by 

or just 

B C 

A E 

B C 

or by T(A, B, C, D, E), which describes all ordered transition amplitudes 
with that process graph, e.g., 

c 
D 

c 

(these three are all related by ordered crossing), in the following sense: 
when all momenta are real, and the energies of an adjacent set of particles, 
e.g., E and A, are positive, and the others negative, then 

in that region equals 

(+) _ (-) E u 

Ae) B ~  C (-) 

A 

The path of analytical continuation is given by the + & rules. 
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In real momentum regions where the set of particles of positive energy 
(and hence the set of particles with negative energy) is not adjacent, e.g., 

A (+) E (-1 

B ( - } - - - - - ~  

C(+) ,- ., D(-) 

as defining the probability amplitude of the we can regard this function 
ordered process 

C(in) 

which is not an ordered transition. Thus, as promised at the beginning of 
this chapter, ordered transition amplitudes generate, by analytic con- 
tinuation, amplitudes for all ordered processes. These newly defined ampli- 
tudes play just as important a role in the calculation of physical amplitudes 
as the ordered transition amplitudes themselves, as will be shown in Section 6. 

The proof that (a) to every particle t there exists an antiparticle f with 
the same mass and spin, but with opposite internal additive quantum 
numbers; and (b) when one takes the appropriate analytic continuation of, 
say 

A g 

c ~ 

to a real region where E~ < -me,  one obtains 

A E 

proceeds in a manner closely analogous to that of usual SMT, so we need 
not present it here in detail. We remark that owing to the present lack of 
precise knowledge about the singularity structure of amplitudes outside the 
physical region, one needs to make a certain rather innocuous assumption 
about that structure in the proof, which is therefore based not solely on the 
four basic postulates; this is as in usual SMT. 

However, since order is a novel dimension here, we need to comment on 
how its behavior under crossing, namely, the invarianee of the process graph 
under crossing, arises from the reasoning of the proof. In other words: 
why can, e.g., the first (or, respectively, last) particle of an " in"  channel of 
an ordered transition amplitude only be crossed into the first (last) position 
of the "out"  channel, and an intermediate particle not be crossed at all 
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within the framework of ordered transition amplitudes. For example, the 
ordered transition amplitude 

A 

B 

C 

-,..x_a.z.x.t-~ 

goes by crossing into 

B 

C 

but not into 

B 

C g 

and B cannot be crossed at all into any ordered transition amplitude such as 
into, e.g., 

A 

c 

To understand the reason for this, we regard the proof in broadest 
outline. For example, crossing for the five-particle ordered amplitude is 
proved by regarding the ordered amplitude 

B G 
C F 

D E 

at a pole in SABra, corresponding to the ordered Landau diagram 

A H 

Xc G F 

E 
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From the analyticity properties of ordered amplitudes one can then easily 
show that the amplitude must have another ordered Landau diagram 

A H 

c 

corresponding to a pole X in SABna of  the same mass and spin but opposite 
internal additive quantum numbers: this pole is called the antiparticle .~ 
of X. It can then be shown that the residues of these two poles 

or, respectively, 

�9 

D - - - - - -~ . . J~  E 

are analytic continuations of one another; with 
one can then deduce that the separate factors 

G 
B X 

and 

or, respectively, 

and 

B 

x--G  
c 
D E 

c 
D E 

A@H 
B + 
X G 

the help of  Lorentz invariance 

D 

are analytic continuations of  one another, which concludes the proof  of 
ordered crossing. 

Now we can answer the question posed above as to why the process 
graph of  an ordered transition amplitude remains invariant under crossing 
to another ordered transition amplitude. In order to be crossed at all, a 
particle X of an ordered transition amplitude T has to occur as a pole in 
some larger ordered transition amplitude To, whose factorized residue is a 
product of  T and some other ordered transition amplitude T'. This can only 
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occur if and only if X is the first or the last particle of  its channel in T: if 
it is the first, e.g., in 

• E 
A O B @ c  

then, e.g., 

T /  _- E 
G A D 

B C 

and the pole 

x E A 

will do the job; and analogously, if X is the last particle, if it is intermediate, 
e.g., 

A @  c 
T = • 

B D 

then no To with pole X and T as a residue factor could possibly be an ordered 
transition amplitude. 

Now regard the case where X is the first particle of its channel in the 
ordered amplitude T, 

T : A D 
B C 

and T', and hence To, chosen as in our previous example, with X as a pole 
in To corresponding to the Landau diagram 

F H 

A E 
D 

C 

Then the only other Landau diagrams corresponding to poles of  To in the 
variable s~a~K are of the kind 

A E 

B 
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and the proof  shows specifically that the antiparticle pole whose existence 
can be deduced from the analyticity properties corresponds to the Landau 
diagram 

F H 

A E 

B 

so that crossing relates 

with 

X _ _ _ _ ~  E 
A D 

B C 

A E 
B D 

C 

and with no other ordered amplitude. All this goes to show that the process 
graph of  an ordered amplitude remains invariant under crossing. 

3.3.8. The TCP Theorem. The famous TCP theorem that states the 
invariance of the SM under the TCP transformation follows from repeated 
crossing, until all " in"  particles have been converted into "ou t"  antiparticles 
with PT-transformed space-time variables p, ~ and vice versa and then 
showing that this series of analytic continuations has taken one back to the 
starting point in p space, so that the amplitude has the original value again: 

T (  t l p i t ~ l ,  t lP2l~2 . . . . .  tmPmt~m ; hP,lZ~ . . . .  , t ~ p ' ~ "  ) 
- ~  r ! - t  l t . . . ~ - -  

= T ( t . p .  - tz . . . . . .  t . p .  - ~ . ,  t , . pm  - tLm,.  i l p ~  t q )  

or in terms of the invariant functions: 

T ( h p ~ l ,  t 2 p 2 ~ 2 "  " t . p . t ~ . )  = T ( t . p .  - t~ . . . . . .  q P l  - ~ )  

3.3.9. Charge Conjugation. Since we see from the above that 

T C P [ t l p ~ t ~ ,  t 2 p 2 F 2 , .  . . ,  tr~Pmt~m) = {imp,= - -  F r o , . . . ,  i l p ~  - -  

and the action of T P  is known to be T P I t ~ p ~ t z ~  . . . .  , tmPml~m) = ( t ~ p l  - -  ~ ,  

. . . .  t m P m -  /~m[, one can deduce the action of the charge-conjugation 
operation C to be 

C l t l P l t Z l " ' "  tmPmtZm) = ~ l im P m t  z . . . . .  , i ~P~ tZ l )  
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or pictorially 

'tt Pt /~t 

(in) 

= 

t't Pt /~l t tm pm/.t.m 

where V is + I. Comparing the first and the last expression, we see that C 
can be regarded as converting t into Z, and reversing the direction of  the 
arrow, i.e., reversing the direction of the edge orientation. Note that this is 
not merely an arbitrary definition of C; C is canonically defined as T.P. 
(TCP), where (TCP) is the operation determined in the above proof. The 
phase factor V [which is again the product of the C values (+ 1) of  the 
individual particles: cIt> --mlt>], and t - + i  are familiar from ordinary 
SMT, but the reversal of edge direction is a specific feature of the ordered 
theory, which entails some novel consequences. 

I f  we postulate the C invariance of  the ordered SM, then 

Am A2 A'3 

A i A4 = 'r/I 77 z �9 .. ~Tm 

A 2 A 3 A m 

and if all the particles A, are self-conjugate, then we have 

AI ~ Am _ A I ' ~  A2 

_L-'" 
�9 "ql r /z  . . .  77m 

Since there is no reason why the two amplitudes with reversed orientations 
should have identical values, we cannot conclude that the product of charge- 
conjugations ~i has to be 1; it could just as well be - 1. This was first observed 
by Y. Eylon (1976, 1978). This is in contrast to the situation in usual SMT, 
where, since there is no reversed order to differentiate them, the two am- 
plitudes are identical, and hence the product of ~i's is unity, which yields 
the well-known selection rule. 

However, we need not be alarmed: as we will see in Section 6, this 
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selection rule is restored when we pass to the unordered planar approximation 
of the physical SM. 

3.3.10. Other Properties. It is easy to check that the various other 
properties of the SM mentioned in Section 2, such as Hermitian analyticity, 
extended unitarity, and the Froissart bound, continue to hold in the ordered 
framework, since the proofs still go through. The one exception is the 
spin-and-statistics theorem, for which there can obviously be no counterpart 
here, since there is no permutation symmetry. With the passage to the planar 
and higher SM approximations, however, the question will become relevant 
again since they are unordered, and hence require permutation symmetry. 
Another property that, we believe, holds for ordered amplitudes, but has 
not been proved yet, is the pole conjecture: any nonzero ordered amplitude 
has poles in all adjacent channels. (So far, we have only established that it 
may have poles in those channels.) 

3.3.11. Duality Properties. Duality is a somewhat ambiguous word 
that has been used in different contexts with different meanings. One frequent 
use is to describe the property of, say, a four-particle amplitude to be expres- 
sible either in terms of fixed-t dispersion relations or alternatively in terms 
of fixed-s dispersion relations, just in terms of the appropriate discontinuities 
and without any arbitrary subtraction constants. But this is just the statement 
of the Regge postulate, since the subtraction constants correspond to the 
Kronecker deltas in the j plane which are ruled out by analyticity of the 
second kind. Thus this kind of duality is a direct consequence of SMT. In 
phenomenology "duality" is used in a less precise but more practical way: 
there the statement is that the amplitudes can be approximated either by a 
few leading resonances in the s channel, or a few leading Regge poles in the 
t channel, but not by a superposition of both. 

The sense in which the word "duality" is used in this work refers to 
the property of the dual amplitudes to be the sum of permutation-ordered 
amplitudes with pole and normal-threshold singularities only in adjacent 
channels; this property brings with it the (approximate) exchange degeneracy, 
/-spin degeneracy, and Regge pole dominance of physical amplitudes. 

We recognize that the planar SM approximation to be introduced in 
Section 6 is going to be exactly dual in this last sense, too, because of the 
property of ordered amplitudes to have poles and normal thresholds in 
adjacent channels only. 

3.3.12. Some Regge Properties of  Ordered Amplitudes. With the further 
assumption of analyticity of the second kind, one can construct a Regge 
theory of ordered amplitudes quite analogous to the usual one. 

One difference arises because, say, the four-particle ordered amplitudes 
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have discontinuities in only two of the three channel invariants, say s and t. 
Therefore, the two signatured Froissart-Gribov amplitudes 

1 daQj(z)[D.(t, z) + D=(t, z)] A~,(t) = ~ _oo 

are equal since (D= = 0); signature need not be introduced; the Regge 
trajectories are strongly exchange degenerate: 

c~+(t) = a- ( t ) ,  fl+(t) = f l-( t)  

Another difference arising from the absence of the u-channel dis- 
continuities is presumably the absence of any j-plane singularities other 
than moving Regge poles (in particular there are to be no Regge cuts and 
fixed poles). The reasons for this conjecture, based on the duality of  the 
amplitudes, are outlined in Chew and Rosenzweig (1978). 

Another interesting point is that, given an ordered amplitude 

A I ~ A 4  

A 2 ~ A 3  

then its Froissart-Gribov projection Aj13(s12 ) cannot have a Regge pole in 
j13, since this would give rise to a pole of 

A I -~'~ A4 

A 2 ~ A ~  

in the variable s13; but we know that such a pole does not exist. Thus there 
are no Reggeon contributions such as 

At~ A2 

A 3 A 4 
or 

Indeed, 
A3 ~2 

I 4 

can only have Reggeon contributions of the form 

1 4 

2 3 

4 3 

I 2 
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i.e., the order of the particles in 

and 

has to coincide. This, especially when coupled with the absence of other 
Regge singularities, strongly suggests that 

A3 

does not have a backward peak (where forward means that P4 is parallel to 
Pl), nor does 

4 ~  A3 
Aa 

3.3.13. The Connection between C h a p e l  Order and Rapidity Order. 
Regard an ordered transition amplitude, e.g., 

A l ~  A4 
A2 A 3 

At high energies (s12 >> 1), it will be dominated by the leading Regge pole 
contribution 

A4 ~v~Azvvv~ A3 

Af A 2 

(the other possible contribution 

A3 ~ A 4  

Ai Az 

is absent, as we saw). 
But at high energies this term has a sharp forward peak within which 

most events will fall, and thus the rapidity order of the "out" particles 
coincides with the channel order. 

For multiparticle "out" channels the same is true; rapidity order is 
strongly correlated with channel order. 
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So can we use this effect to measure the order of individual processes, 
at least at high energies ? This is not possible, since, e.g., the orders 

I 2 I 5 4 2 

all contribute to that forward peak. 

4. INTERNAL QUANTUM NUMBERS IN S-MATRIX THEORY 

4.1. Introductory Remarks 

We have already mentioned several times that the ordered SM has 
a quarklike spectrum of particles; a statement like that implies certain 
statements about the possible values of a set of internal quantum numbers. 

In our theory particles are labeled by an integer index t only; there is 
no a priori assignment of internal quantum numbers. If  we therefore wish 
to make predictions about the internal quantum numbers (IQN) of the 
particles of the spectrum, we have to ass ign  them in a way determined by 
the theory. This assignment necessitates a systematic understanding of the 
nature of internal quantum numbers in SMT. 

This section is dedicated to the development of such an understanding 
within the framework of conventional, unordered SMT. The results obtained 
will be useful in the following section in working out the quarklike quantum 
number predictions of the ordered theory. 

Traditionally, internal quantum numbers have been introduced into 
SMT in a rather unreflected, ad hoc way, so to say "by hand." Specifically, 
it has been customary to make the following implicit assumptions: 

(a) that there be a set of n additive, conserved, integer-valued channel 
functions Q~I), QC2) . . . .  , QC~), called internal quantum numbers 
(IQN). By channel function we mean that QCl)( t lp~pl ,  t2p21~2 . . . .  , 

t,~PmPm) =-- Q<~>(tt, t2 . . . . .  tin). By additive we mean that 

Q<i)(tl, t2, . . . ,  tin) = QCi)(tl) + Q~)(t2) + . . .  + QC~)(tm) 

(b) that the complete set of internal and space-time quantum numbers 
of a particle t: {Q~l)(t) . . . . .  Q<~)(t), re ( t ) ,  s ( t ) , p ( t ) }  completely 
specify the particle t; this set of values may thus be used as a 
canonical labeling system for the particles, instead of the arbitrary 
integer index t, or an equally arbitrary name like "proton." 

Within this framework, the question as to the spectrum of particles can be 
formulated in the following way: For which set of integer values of the 
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Q")'s, positive value of m, nonnegative integer or half-integer value of s, 
and _+ 1 value of P, does a particle t exist with these values? Or in other 
words: if an initial state (and therefore, by conservation, the final state) 
of an amplitude has a set of IQN values Q(1), Q(2) . . . .  , Q("), an energy m, 
an angular momentum s, and a parity P, then does that amplitude have a 
pole there? To know the answer to this question is to know the spectrum 
of particles. 

We already mentioned in Section 2.1 the unsatisfactory situation that 
SMT has so far not come up with a calculational method of answering this 
question, in spite of the bootstrap "profession of faith" that the answer is 
uniquely determined by the theory and lies latent within it. Therefore, in 
most calculational applications of SMT one introduces the particles (and 
their parameters) relevant to the calculation by hand, usually as determined 
from experiment. 

In Section 5 we will see how the IQN values of the spectrum of mesons 
are pred ic t ed  by the theory of the sequentially ordered SM; as is the OZI 
rule; in Part Two this is extended to all hadrons. 

In this section we examine the status of the above assumptions (a) and 
(b), i.e., the origin of the IQN formalism in which the specific spectral 
predictions of the next section are expressed. 

4.2. Defining the Problem 

What is the origin of the internal quantum numbers and the properties 
postulated for them in (a) and (b)? The naive notion that certain "charges" 
simply exist in nature, are indestructible (and hence conserved), occur in 
multiples of a unit charge, and that it is an intrinsic property of particles to 
"carry" characteristic amounts of these charges, is rooted in a mechanistic 
way of thinking totally inappropriate in relativistic quantum mechanics; 
besides, it is hardly illuminating, since there is no inner logic connecting 
these assumptions with those of SMT; nor even with one another; they are 
just grafted onto SMT for convenience. 

From the SMT point of view, any particle property should be reducible 
to observable concepts, such as in particular its interactions with other 
particles. Since the SM is defined in terms of the particle parameters t, p,  tz, 
with t an integer index, any other particle property such as its IQN values 
has to be derivable from the SM; i.e., given the SM (numerically), we have 
to be able to assign each particle and channel its set of IQN values. 

In the case of the IQN, it is well known how these assignments are 
performed: it is an observed fact that the SM obeys certain selection rules 
that can be simply expressed by assigning each particle an appropriate set 
of additive IQNs and demanding their conservation. These selection rules 
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belong to a class of  selection rules that we will call s e c t o r  se l ec t ion  ru les;  
they make no reference to the space-time parameters p, t~ of the particles, 
but, by definition, rule out transitions between certain pairs of  channels: 
r =_ (t~ . . . . .  tin) + ~' =-- ( t ;  . . . .  , t ' ) .  It is the selection rules that are the most 
basic reality; IQNs are simply an elegant way of expressing them. 

Now, from the SM point of view, it is very natural to ask the following 
questions: Is the structure of SMT such as to demand the presence of  
certain sector selection rules? Is every possible channel selection rule expres- 
sible as the conservation law for an appropriately defined additive quantum 
number ? If  not, then how ? Must any particle always be assigned in i n t eger  
multiple of  some unit? Is a particle fully specified by its IQN and space- 
time quantum number values? It is these questions that we will examine 
n o w .  

We will see that all sector selection rules can be expressed as conservation 
laws for appropriately defined additive or multiplieative quantum numbers 
[a multiplicative internal quantum number ~) of order n is a phase factor 
e 2'~mI'~ (with m an integer, 0 ~< m < n), such that ~)(tt, t2 . . . .  , t~ )=  

/c I-I~=~ Q(h)] that every additive IQN may be scaled so as to adopt integer 
values for all particles; and that no two particles may have the same values 
of all IQNs and m, s, P simultaneously (whence these values determine the 
particle type t). 

4.3. Assumptions, Definitions, and Some Simple Facts 

In this section we work within the framework of physical unordered 
SMT and its basic assumptions (see Section 2, particularly the end of Section 
2.2, where the assumptions about the spectrum of particles are specified). 

A finite set of particles r = {tl, ts ,  �9 � 9  t~} is called a channel .  The term 
"set" here is actually a misnomer, since the same particle may occur several 
times in one and the same channel. A s t a t e  of  this channel is defined by 
specifying 1 1 -  {pl, ill; Ps, t~2 . . . .  , p~, t~n}. This state may be denoted by 
I~, II). We call the Hilbert space of all states I~-, 11) with fixed �9 the channel 
space of r. 

S( r ;  T') is that function of (11, II'), such that IS(r ;  r')](11, 11')--- 
S(~-, 11; ~-'II'). Thus S(r ;  ~-') = 0 means S(-r,  II; ~-'11') = 0 for all 11, II'. 
And similarly for T(~-; r'). Two channels r, r '  are said to d i rec t l y  c o m m u n i c a t e  

if and only if T ( r ;  r ' )  # 0; this is denoted by ~- ~ r'. Two channels ~-, ~' 
are said to c o m m u n i c a t e  if and only if there is a finite sequence of channels 
{~, r s , . . . ,  ~'m} such that �9 ~ ~1, ~1 ,-~ rs, ~ ~ ~a~'"~m ~ ~" (included is 
the case where m = 0, i.e., ~- ~ ~-'). 

A channel r is called noninteracting if T ( r ,  r') = 0 for all channels 
�9 '. Otherwise it is called in terac t ing .  Note that if and only if a channel ~- 
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is interacting, then T(r; r) ~ O. To see that this is true, regard the dis- 
continuity of the r --~ r forward elastic amplitude 

I 
I 

i 
I 2 

T l ~ J  

> � 9  

(by hypothesis, since 7 was assumed to be interacting). Thus the forward 
elastic amplitudes of interacting channels are always nonzero. 

We will soon see that for the physical SM, all channels are interacting; 
for the ordered SM that will not be the case. 

The communication relation " ~ "  is an equivalence relation on the 
set of all interacting channels, since for these it is reflexive (~, ~ ~-), and 
symmetric (~- ~ r '  => ~-' ~ ~-) and transitive (~- ~ ~-', ~" ~ r" ~ T ~ r") by 
definition. Therefore, the set of all interacting channels decomposes into 
disjoint equivalence classes St of interacting channels in such a way that 
any two channels from the same S, communicate, but no two channels from 
different S,'s communicate. These equivalence classes are called sectors. 
Note that two channels from the same sector need not communicate directly. 
(We will see that all channels from the same sector are assigned identical 
IQN values, while conversely channels from different sectors differ in at 
least the value of one IQN.) 

A selection rule demands that, for a given state li), there exist a subspace 
F, (of the Hilbert space of final states), of nonzero measure, such that for 
every I f )  ~ F~(i]S[f) = 0. We know of three kinds of selection rules: 

(a) Space-time selection rules, involving only p's and /~'s; they are 
generated by Poincar6 invariance (4-momentum, angular momentum, 
and parity conservation). Occasionally they can block the direct 
communication between two channels completely. 

(b) Sector selection rules dividing the set of all channels into mutually 
noncommunicating sectors. It is these that will give rise to additive 
and multiplicative conserved IQNs. 

(c) Selection rules generated by internal symmetries of the SU(n) kind, 
in particular SU(2). These occasionally block the direct communica- 
tion of two channels; however, in general they cannot be expressed 
in terms of channels, but only in terms of linear combinations of 
states from different channels. 
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An important remark is that if two one-particle channels (t} and (t'} 
both communicate directly with a channel 7, then the particles t and t' 
cannot share the same values of mass, spin, and parity simultaneously: I f  
(t} ~ % {t'} ~ z =~ (rn(t), s(t),p(t)) v~ (m(t'), s(t'),p(t')). For if this were 
not  the case, then since T(z; ~-) has both t and t '  as factorizable poles, the 
net effect would be a nonfactorizable pole in T(z; 1") of definite spin and 
parity, and of course mass. But pole factorization is a direct consequence of 
unitarity, and has to be demanded for a particle pole. Thus we would have 
a pole not corresponding to a particle, this pole would mediate long-range 
effects like an ordinary particle, e.g., a double scattering 

it would correspond to an irreducible representation of the Poincar~ group; 
and yet it would not be a particle, since the information the second scattering 
system gets about the first one cannot be condensed into particle degrees 
of  freedom. One might even argue that t and t '  should not have the same 
mass (even if they differ in s and P),  if they both communicate directly with 
a common channel ~-. One might hope to extend the argument to the case 
where there is no such common channel ~- with which both t and t '  communi- 
cate directly, but instead a chain of channels ~-~ such that {t} ~ zl, ~-~ ~ 
~'2 . . . .  , r~ ~ {t'}; (this is admittedly somewhat academic since we know of 
no case where two channels from the same sector have no common channel 
r that they both communicate directly with); with this generalization, we 
have the theorem: No particles from the same sector can be degenerate in 
mass, spin, and parity simultaneously (or, respectively, in mass alone). 

4.4. Direct Communication of Channels within a Sector 

Regard three channels r l ,  r2, ~'a such that zl ~ r2, ~'2 ~ ra. We ask the 
question whether this implies that ~-1 ~ Ta. If  it does, then " ~ "  is transitive, 
and then all channels within a sector would communicate directly, and the 
distinction between communication and direct communication would be 
eliminated. 

Unitarity implies 
I 
I 

T} ~ T 3 
I 
{ 

T 2 
TI ~ T3 

r CT 2 
T 5 
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and since 

and 

3,ZZ~Z~ 3 2 # 0 

one might be tempted to conclude that at least the first term on the right- 
hand side is nonzero, and hence in all probability the whole expression. 

But this argument is fallacious; for one thing, owing to the presence of  
the discrete parameters s, P, the product 

might well be identically zero even if the factors are not. For  example, if  
channel % consisted of  two scalars, % of  a scalar and an isoscalar, and r2 
was an arbitrary three-particle channel all in the same sector, then angular 
momentum and parity would prohibit  direct communication between r 1 
and %, even though r l  ~ r2, r2 ~ ra. Furthermore, even if the product is 
nonzero, the integral over the % phase space need not be; and even if 

r 2 

the other terms on the right-hand side might still cancel it; all that is required 
for this to be possible is that there be other channels r with the same threshold 
energy and number of  particles as r=, since only such terms would have the 
same analytic form as the r2 contribution so that a finite number of  them 
could cancel it. For  example, r~ and r a could have a distinct and definite 
value of C or G parity, whereas r= has no such definite value. Or rl  could 
consist of  two I = 0 particles, r= of  two I = 1 particles, and ra of  an I = 0 
and an I = 2 particle. And indeed, as the above examples show, selection 
rules that block the direct communication of certain pairs of  channels within 
a sector do exist, even if they tend to be exceptional. In the special case 
where r2 is a one-particle channel, however, it is true that r~ ~ r2, r2 ~ ra 
implies that r~ ~ r a. This is so because now 

is not an integral, but merely a product of  two nonzero factors; and since 
there can be no other particle of  the same mass in this sector, as we saw 
before, the finite sum of  remaining terms on the right-hand side cannot 
reproduce a r2 pole and hence cannot cancel the r2 term. Owing to the 
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assumption that there are no zero-mass particles and no accumulation points 
in mass, the number of  channels that can contribute to a unitarity sum at a 
given energy is finite. And a finite number of  pole terms with masses ~rn ,  

together with a finite number of  terms corresponding to other kinds of  
singularities cannot add up to a pole of  mass m. Therefore the proof  goes 
through and shows that ~'1 ~ ~'3, as claimed. 

As a result, all the channels of  a sector that communicate directly with 
a given particle t communicate directly with one another. Thus to every 
particle t in a sector S there exists a set S ~t) of  channels communicating 
directly with t and with one another; the union of all these S ~t) is equal to 
S itself, owing to the pole conjecture. But the S ~t) are not disjoint; indeed 
most of  the channels will be in all S ~t~ simultaneously. 

4.5. All Channels of the Physical SM Are Interacting 

We now show that in a sense the concept of  "interacting channel" is 
trivial for the physical SM, since all channels are interacting. This constitutes 
a major difference between the physical and the ordered SM: for the latter 
it is precisely the fact that not all channels are interacting that gives rise to 
flavor. 

First we note that every one-particle channel {t} is interacting (since 
as t is a particle of  the SM spectrum, there must be at least one nonzero 
amplitude with t as one of  the external particles: 

t ( ~ T  ~ 0 

Next we observe that t f  all two-particle channels are interacting, then 
all channels are interacting. To see this, choose an arbitrary three-particle 
channel ~- = {tl, t2, t3}. Then 

t I _ ~ f - ~ _ , . .  t I t I ~ tl 
t z - - - - ~ - ( . J ~ / ~ S Z t z  = t z ~  tz  + �9 �9 �9 

t3  ~ . ~ /  t3 T 3 -  ~,~ t 3 

Since the first term on the right-hand side is nonzero by hypothesis, and 
the remaining terms cannot cancel it (as we saw), 

t I t l  

and so 7 is interacting; since ~- was arbitrary, all three-particle channels are 
interacting. 

The same kind of reasoning shows that if all (n - 1)-particle channels 
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are interacting,  then all n-particle channels are, too:  choose an arb i t ra ry  
n-particle channel  r = {tl . . . . .  tn}. Then  

' - - \ _ 2 : : : ;  - , : ' ~  + - . .  o 
(by hypothesis) ,  and so r is interacting. Thus,  by  induction,  we have shown 
tha t  i f  all two-part icle channels are interacting,  then all channels  are inter- 
acting. So if there are to be any  noninteract ing channels at  all, then there 
have to be noninteract ing two-part icle channels. 

N o w  it is clear tha t  any  two particles h ,  t2 occur  together  as external 
particles o f  a nonzero  ampl i t ude  if  and only if  ~- = {t~, t2} is interacting. 
This is so because, i f  h ,  t2 occur together  on a nonzero  ampli tude,  then by  
successive crossing one can bring tl and  to to one side (say, as initial particles), 
and all the other  particles to the o ther  side: 

Therefore ,  r = {h,  t2} is interacting. The  converse is trivial. 
Next ,  we show tha t  the relat ion "----" between two particles h and  t2 

defined by " t l  ~-~ t2 -~> r - {tl, t2} interact ing,"  is an equivalence relation. 
The  relat ion is reflexive: t ~-~ t for  all t. This  is because since t is a particle, 

it occurs in a nonzero  ampli tude,  f rom which we see tha t  there is an interacting 
mult ipart icle channel  tha t  contains t; for  this channel,  

t t 

t tm 

and so by  crossing 

therefore 

t I 

C \  ......... i - > 

trn 

and so by  crossing 

'=63=: t :~ 0 

thus {t, t} is interacting,  for  all t, and hence by definition t ~-- t for  all t. 
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The relation is s y m m e t r i c :  t l  ~ t2 <r t2 ~--" q .  This is clear since {q, t2} - 
{t2, q}; and so if one of these channels is interacting, so is the other. 

The relation is t rans i t ive:  t~ ~-~ t2, tz ~ ta =~ t~ ~ ta: I f  (tl, t2} and {t2, ta} 
are interacting, then 

tl ~ t l  tl ~ tl 
t 2 - - - ~ : : : = t z  = t z ~  tz + ~ �9 , ~ (~) 
t ~ ~ t  3 t 3 -  ~.' t 3 

and so by crossing 

@ 

t 3 

and hence (discontinuity relation) 

tl ~ tL 
,. ~: �9 

t 3 t 3 

{tl, t3} is interacting. 
Since L,  is an equivalence relation, the set of  all particles decomposes 

into equivalence classes such that any two particles from the same equivalence 
class form an interacting channel, whereas any two particles from different 
equivalence classes form a noninteracting channel. As we saw before, this 
implies that no two particles from different equivalence classes can occur in 
a nonzero amplitude together. Taking note of  this fact, we see from the 
cluster decomposition that the SM factorizes into a product of S matrices, 
each defined on the Hilbert space generated by the particles from one of  
the equivalence classes alone. Each of  these SMs is unitary and has all the 
other properties of a physical SM. 

The physical interpretation of  this situation, if there is more than one 
equivalence class, is that of a set of mutually noninteracting worlds, one 
corresponding to each equivalence class of  particles. And since we are living 
in one of  these worlds, and are not concerned (here) with metaphysics, we 
may define the sub-S matrix pertaining to our world as the physical SM. 

In this sense, all channels of the physical SM are interacting. 

4.6. The Sector Group 

We are now ready to introduce the concept of the sec tor  group.  The 
elements of this group are the sectors of the physical SM. We may denote a 
sector S by [7], where 7 is any one of the channels contained in S. Given 
any two channels, 7 and 7', we define ~- o 7' to be the channel that contains 
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all  t he  par t ic les  o f  r a n d  t hose  o f  r ' ;  i f  ~- = {h . . . .  , t,,}, a n d  r '  = {t[ . . . . .  t,~}, 

t h e n  r o r '  --- {q ,  t2 . . . . .  tin, t '  . . . .  , t,~}. 
T h e  g r o u p  m u l t i p l i c a t i o n  " o "  on  the  set o f  sectors  is def ined  by  [~-] o 

[ r ' ]  - [r  o ~-'], whe re  the  o p e r a t i o n  o f  the  r i g h t - h a n d  side was  ju s t  def ined  

a b o v e .  
W e  first  h a v e  to  s h o w  t h a t  th is  o p e r a t i o n  is wel l  def ined,  i.e.,  t h a t  t he  

p r o d u c t  S~ o ,72 o f  two  sectors  S~ a n d  S~ does  n o t  d e p e n d  on  wh ich  pa r t i cu l a r  

channe l s  a re  c h o s e n  to  r ep re sen t  the  sectors  in the  def in ing  e q u a t i o n :  i f  

S~ = [-rl] = [z~], a n d  S~ = [~'~] = [ - i ] ,  t h e n  [~-~ o ~-~] = [ r l  o r;.] is t o  be  

p r o v e d ;  to  do  this  we  p r o c e e d  in th ree  steps. 

(1) F i r s t  we  s h o w  t h a t  i f  t w o  channe l s  ~ ,  ~2, c o m m u n i c a t e  di rect ly ,  

~ ~ ~'2, t h e n  fo r  any  channe l  ~ o n e  has  �9 o ~ ~ ~ o r2. So le t  us  a s s u m e  

"rl = {t(~ ~ ,  t (~  ~ . . . . .  t ~ ) } ,  t~ = { t ~  ~ ,  t (~  > . . . .  , t(~2~}, ~: = { h ,  t2  . . . .  , t , } ,  a n d  ~-~ z 

~-~. T h e n  

t a . t l  

tr ~ t r  

t I t L 

tr ~ ~ : 2 z  tr t12) 

m n 

�9 �9 @ 

T h e  first  t e r m  o f  the  r i g h t - h a n d  side is n o n z e r o ,  s ince it  is a p r o d u c t  o f  a 

( n o n z e r o )  e las t ic  a m p l i t u d e ,  a n d  o f  

Ti @ T2 

w h i c h  is n o n z e r o  by  hypothes i s .  A n d  fo r  the  usua l  r ea sons  this  t e r m  c a n n o t  

be  cance led  by  the  r e m a i n i n g  te rms .  T h e r e f o r e ,  r l  o r2 ~ r2 o ~. 

(2) I f  any  t w o  channe l s  ~'1, ~'2 c o m m u n i c a t e ,  r l  ~ ~2, t h e n  fo r  every  

c h a n n e l  r ,  ~ o r~ ~ ~- o ~2 holds .  

F o r  i f  ra ,-~ z2, t h e n  by  def in i t ion  the re  exists a f ini te  sequence  o f  

channe l s  {T m,  ~.(2~,..., ~(~}, such tha t  ~'~ ~ r m,  ~'(~ ~ r ( 2 ) , . . . ,  r (~) ~ r2. 

A p p l y i n g  the  l e m m a  o f  (1) repea ted ly ,  th is  impl ies  t ha t  T o r l  ~ ~ o ~-m 
~. o ~.(1~ ~ "r o T (2), . . . ,  ~" o ~.(n~ ~ ~. o ~. a n d  hence  ~" o z~ ~ ~- o 72, as  c l a imed .  

(3) N o w  we  p r o v e  the  m a i n  c l a im:  cons ide r  any  f o u r  channe l s  r~, z[,  

' ' ' ' and  a lso  ~'2, r2 such  t h a t  ~'1 ~ r l ,  r2 ~ ~'~. T h e n  by  (2) rz o ~'2 ~ r l  ~ z2, 
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. . . .  by  ity ' ' ~'1 o ~'2 "~ ~'~ o ~'2, hence the transitiv o f  ~ ~'1 ~ r2 ~ ~'1 o r2, as 
claimed. In  other words, if [rl] = b [ ] ,  and b'2] = [z~], then [zl o ~'2] = 
[~'[ o ~-~], hence the group multiplication "o" on the set o f  sectors is well 
defined. 

This multiplication is associative and commutat ive  because the operat ion 
"o" o f  channel composi t ion is, by definition; so 

[~1] ~ ( [ -~1 o [ ~ 1 )  = [ ~ d  o [ ,~  o .~1 = [ -1  ~ ( -~  o , ~ ) ]  = [(~1 o , ~ )  o ~1 

= [ , ,  o -51 o [ ,~1 = ( [~1]  o [ ~ ] )  o [ ,~1 .  

and 

[ -1 ]  o [ , ~ ]  = [ -1  o , , 1  = [ -2  o - 1 ]  = [ -~]  o [ - d .  

The unit  element o f  the group is given by b" ~ ~], where ~- is an arbitrary 
channel;  it is well defined since for any two channels r, ~-', we have r o f 
~-' o f '  (obtained by crossing f rom the statement z o ~-' ~ ~- o ~-'), and thus 
b o ~ ]  = b "  o ~']. 

The inverse element [~]-1 o f  any sector b'] is the sector containing the 
charge-conjugate channel:  [ r ] -1  = [~], since [z] o [~] = [r o 7] = unit  
element. 

Thus the sectors indeed form an Abelian group under  the operat ion 
"o" :  the sector group. 

4.7. The Origin of Internal Quantum Numbers 

Any  set o f  elements o f  a group such that  no element o f  the set can be 
expressed as an appropriate  product  o f  the others is called independent.  
Fo r  any denumerable Abelian group we can always choose a set o f  indepen- 
dent  generators {$1, $2 . . . .  } (depending on the group,  it could be a finite 
or  an infinite set), such that  every group element S can be expressed as 
S = S~1 o S"2 o..  2 �9 l-I~ SI% where the n~'s are integers only a finite number  
o f  which are nonzero.  I f  the order o f  a generator  S~ (i.e., the smallest positive 
integer r~ such that  S r~ = unit element) is finite, then we make the addit ional 
convent ion that  0 ~< n~ < r~ (since n~ is only defined modulo  r~). Then the 
representation S = 1/-I~ S[ ~, is unique, and the set o f  integers {nl, n 2 , . . . }  
fully characterizes a group element. 

We now apply all this to the AL'elian sector group:  then we choose a 
set o f  sectors {$1, $2 . . . .  } that  form an independent  generator  set. And  
every sector S is then characterized by its set o f  integers {nl, n2,. �9 �9 }, defined 
as above by S = I-I~ Sp,. 

We now define a set o f  sector functions Q~(r), one for each generator 
S ,  in the following way:  for a sector [~] = ir-l~ S~,, Q~([~']) = n~. The full 
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set {Q~(r), Q2(r) . . . .  } thus characterizes the sector to which that channel 
belongs: [r] = 1-Is S~ ~(m) in terms of the fixed set of generators &. 

If  & is of infinite order, re = m, then Qs(r) is an additive, conserved 
quantum number; additive, because if r = 1-ij S}'J, r '  = I-L S} ~,, then 

Qs(ror')  = Qs([. o ~ ' ] )=  Q~(b-] o [ . l ) =  Qe( jI71 s}~,-~-~, s}~',) 

) x Qs S}~,+~, "~ = ns + ns = Qs(r) + Qs(r') 

and conserved because " in"  and "ou t"  channels are in the same sector, and 
thus have the same Qfs. 

I f  & is of finite order r~, then we may still define a corresponding con- 
served quantum number Qs(r) as before, but it is not additive, since Qs(r) 
is only determined modulo r~, and we have chosen the convention 0 ~< 
Q~(r) < rs; thus Q~(r o r ' ) =  as (r )+ a , ( r ' ) -  mrs, where m is a non- 
negative integer chosen so that 0 ~< Q(r o r') < rs. 

Therefore, when rs is finite, Q~(r) is not that useful. Instead, we define 

0s(r) ~- exp rsl127riQe(r.__.___2 | 
I_ rs J 

This conserved quantum number has the nice property that it is multiplicative: 

[2rriQ,(r o r')] = exp (2~ri(Qs(r) + Qe(r') - mrs)~ 
0s(r o r') = exp l_ r, v re , 

= exp [2triOs(r)] .exp [2rriO~(r')]  = O,(r). O=(r, ) 
t r~ j I_ r~ j 

Thus each generator of  the sector group corresponds to an additive 
conserved internal quantum number Qi or a multiplicative one Os, depending 
on whether it is of infinite or finite order. 

Our choice of  the set of generators was to a large extent arbitrary. If  
we choose another set {$1, S' . --- ' 2 , . . } ,  with & 1--Ik S~,~, then the correspond- 
ing Q;'s are related to the Qk's by a linear combination Qk = Y.s lskQ~, in 
the case when all generators are of infinite order. 

We have now seen that sector selection rules are always expressible as 
conservation laws of  appropriately defined additive and/or multiplicative 
internal quantum numbers; that the additive ones have integer values; and 
from the nondegeneracy of particles within a sector we know that specifying 
the IQNs (which specifies the sector) and (In, s, P) specifies the particle. 
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5. Q U A R K - M O D E L  PROPERTIES OF THE O R D E R E D  S MATRIX 

5.1. Introductory Remarks 

Why can the quantum number and multiplet structure of all known 
hadrons be predicted by a simple nonrelativistic model according to which 
each hadron consists of a characteristic combination of fundamental con- 
stituents called quarks? These quarks qk, of which there are only a few 
different kinds (although the number of them required to explain experi- 
mental data is increasing by the year) differing in "color" and "flavor," 
are allowed to combine according to the zero-triality rule, e.g., (q~j) (non- 
exotic mesons), (qkqjqk) or ( ~ j ~ )  (baryons or antibaryons, respectively), 
(q~qTtkql) (baryonium), etc. Until recently all hadrons found in nature were 
nonexotic mesons and baryons (or, respectively, antibaryons). 

Some readers may be inclined to answer the above question in a very 
straightforward way: Because hadrons do consist of quarks, plus maybe 
some other elementary constituents, like gluons. That these "particles" do 
not occur in nature, but merely manifest themselves indirectly in the hidden 
inner recesses of hadrons, is attributed to their "confinement." This view, 
that some gauge theory of local elementary fields like QCD will emerge as 
the ultimate particle theory, is popular today. We have already voiced our 
reservations against this approach in Section 2.1 and will not pursue the 
matter any further here. Since these more sophisticated versions of quark 
theories have not till now produced any observable predictions in strong 
interactions that go beyond those of the naive nonrelativistic quark models 
(and indeed strictly speaking do not even reproduce these, since the con- 
finement problem is not solved at this point), we will in the following be 
referring only to the latter. 

Here we wish to show that the ordered SM approach is able to reproduce, 
without having been constructed specifically for that purpose, most of the 
predictions of the quark model in the field of strong interactions. And in so 
doing we will gain a completely new perspective on some of the basic con- 
cepts of the quark model. In particular, quark diagrams will be seen to be 
equivalent to process-order graphs, and quarks as order relationships between 
particles rather than as particles themselves. In this chapter we will deal only 
with nonexotic mesons; the generalization to all hadrons is presented in 
Part Two. 

We first show that so-called order selection rules (which prohibit, say, 
a particle t' from being the successor of another particle t: 

,t i 
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in any nonzero amplitude) allow us to categorize all particles and ordered 
channels into ordered sectors denoted by (i, j )  in such a way that a particle 
t '  from (k, l) can be the successor of  a particle t from (i,j) in a nonzero 
ordered amplitude if and only if j = k; here the integer indices i, j ,  k , . . .  
are called flavor indices. As a result, the edges of the process graphs can be 
labeled with the flavor indices and are seen to be formally identical to 
conventional mesonic quark diagrams. Thus the ordered amplitudes are 
seen to be, by their very nature, quark diagram amplitudes obeying the 
OZI rule, and the particles are identified as nonexotic mesons. This identifica- 
tion is confirmed when, with an eye on the transition to the unordered, 
physical SM, and based on the ideas of  Section 5, we assign additive con- 
served internal quantum numbers to these particles, and find that they 
coincide with the mesonic quantum numbers predicted by the quark model 
and experimentally observed. Finally, after some remarks about internal 
symmetry and multiplet structure, we compare the quark and ordered SM 
points of  view and their successes for strong interactions. 

5.2. Process-Order Graphs and Quark Diagrams 

A mesonic quark diagram can always be drawn in exactly one way as 
a planar diagram, i.e., without any quark lines crossing one another on the 
plane of the paper. For  example, 

B C 

("untwisting") 

A C 

This defines for each quark diagram a unique sequential directed order 
identical to that of a process graph. 

Then what is the formal difference between a quark diagram and a 
process-order graph ? First of all, there is a difference in the way that particles 
are represented: in process graphs as a 2-vertex 

in quark diagrams as 

AI 
.5 
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This difference, however, is superficial: The graph 

B / ~ \ C  
contains no more and no less information than the graph 

They can be converted into one another by bringing the two quark lines of  
a particle to a point and then deforming to a circle 

E B C 

But there is a second, more important difference between quark 
diagrams and process graphs: in the former, the quark lines are differentiated 
by a flavor label (and in some models by a color label) whereas an edge of 
a process graph is simply an edge, without further qualification. 

However, in the following we will show that flavor labels are a natural 
feature of  the edges of  a process graph, if there are order selection rules at 
work in the OSM; and with that the formal equivalence of quark diagrams 
and process graphs will have been established. 

5.3. Order Selection Rules 

We discover the concept of  order selection rule immediately when we 
ask ourselves the question whether all ordered channels are interacting (in 
the sense of Section 4): Is T(r,  ~') # 0 for every ordered channel r ? In the 
case of the physical, unordered SM we were able to prove it, but here that 
p roof  does not go through; the reason it does not go through is that now an 
ordered channel is not just a set of  particles of  an ordered amplitude, but a 
set of adjacent particles of  an ordered amplitude. 

Thus while we prove in a formally identical way (see the proof  in 
Section 4) that " i f  all ordered two-particle channels are interacting, then 
all ordered channels are interacting," we can no longer argue that the two 
properties of two particles t, t '  of (a) (t, t ') being an interacting ordered 
channel, (b) t and t '  occurring in the same nonzero ordered amplitude are 
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equivalent, since even if t and t '  occur in the same nonzero amplitude, they 
cannot be made to become adjacent by crossing (crossing preserves the 
order); and hence the rest of the argument that all channels must be 
interacting breaks down. 

Thus there could well be certain noninteracting ordered channels. And 
if there are, then the proof  shows that there must be noninteracting ordered 
two-particle channels. In a sense these are the basic source of  noninteracting- 
ness: if an ordered channel is noninteracting it is always because some 
ordered two-particle subchannel is noninteracting. 

Let us regard such a noninteracting ordered two-particle channel, say 
(t, t'). Then the channel graph 

cannot appear in any nonzero ordered amplitude. We call this an order 
selection rule since it rules out certain order patterns in the ordered SM, i.e., 
excludes certain ordered channels as noninteracting. 

We will now examine what inferences we can draw if we assume that 
there are order selection rules at work in the OSM. In order to study them 
in isolation we make the assumption that there are no other channel selection 
rules at work in the OSM, in particular not the kind studied in Section 4 
that give rise to additive conserved quantum numbers. To be more precise, 
we will assume that ~ every bisection of a process graph yields two inter- 
acting channels, then the corresponding ordered amplitude is not identically 
zero. We will see later, when this hypothesis is translated into the language 
of  the physical, unordered SM, that what remains of  the order selection rules 
is a set of  so-called canonical conserved additive internal quantum numbers 
that are precisely the set of additive IQNs found in nature; that no additional 
additive or multiplicative IQNs of the type permitted by the structure of  
SMT (see Section 4) occur in nature: the order selection rules we are about to 
examine are thus the origin of all IQNs known. We find this intuitively 
appealing, since order selection rules are "local," referring as they do only 
to the ability of a particle to link up with a neighbor. 

5.4. Successor and PredecessorClasses  

Choose any particle t. We call any particle t '  such that (t, t ')  is an inter- 
acting ordered channel a successor of t, and any particle t" such that (t",t) 
is interacting a predecessor of  t. The set of  all successors of t is called the 
successor class of  t, denoted by St; the set of all predecessors of  t is called the 
predecessor class of t, denoted by Pt- If  there are no order selection rules, 
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then for every t, St and Pt contain all particles. Otherwise some particles will 
be in St (or, respectively, P~), while other particles will not. The various sets 
St will form a covering of the set of all particles, since every particle is the 
successor of at least one other particle (and similarly for Pt). Thus, by 

will occur in a nonzero ordered amplitude if and only if t" ~ St, or what is 
equivalent, t e I t , .  

We now prove the crucial property that the covering St is disjoint, i.e., 
two successor classes St1, St2 are either equal or they have no particle in 
common: either St1 = St2 or St I c~ St~ (the empty set). 

To prove this, we first make two observations: 
(a) If  (h, t2) is interacting, then so is (/2, tO- This is because if 

then by Cinvariance 

11 [ ~ x , [ ~  I~ 
t2 ~ y t2 # 0 

T~ 

is nonzero, too. 
(b) If  tl and t2 have a common successor t, then t2 is a successor of  tl, 

and il a successor oft2:  i f t  ~ St1, t ~ St2 ~ il e St1, i2 ~ St2. This is so because 
by hypothesis 

" ( ~ ' t '  # 0 t 

and therefore by crossing 

is too; also 

t~ 

and hence by C invariance 

i 

]'l 

O f2 
. _ ~ o 

T 0 # 

[z 
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So, by the ordered discontinuity relation, 

t I ~ t  t I . _~ .~ , ' - -~ l_ . t  

since the first term on the right-hand side is the product of  two nonzero 
factors and cannot be canceled by any further terms for the usual reason 
(see Section 4). Hence by crossing 

o 

and thus (tl, t2) interacting; and by (a) (t2, ~1) is interacting too. And quite 
analogously, if two particles h and t2 have a common predecessor t, then 

We are now ready to prove the disjointness of  successor classes. Let us 
assume that two successor classes S a and St2 are not disjoint: then they 
contain a common particle, say t: t ~ Sty, t ~ St2. But then, as we just saw, 
/2 ~ St~ and i~ e St2. Now choose an arbitrary particle t ' s  S a. Because t2 
and t' have a common predecessor, namely, t~, we conclude that t2 ~ P,,, 
i.e., t ' e  St2. Thus an arbitrary particle t ' e  St~ was found to be t ' e  S,~; 
hence St~ C Sty. Analogously one proves St~ C St1. Hence S a = St2. Thus 
we have shown that two successor classes are either disjoint or equal. 

In  an analogous way one shows that predecessor classes are either 
disjoint or equal, and that the predecessor classes thus form a disjoint 
covering of the set of  all particles. 

We now note that there is a one-to-one relation between predecessor 
and successor classes: choose any particle t, and any successor of  t, say t ' .  
Then t e Pt., t ' e  St. Then, as we saw, any t~ e Pv is a predecessor of  any 
t [ e  St; and any t~ ~ St is the successor of  any t l ~  Pt,. This defines a one-to- 
one relationship between predecessor and successor classes: for a predecessor 
class P and a successor class S that correspond to one another, every particle 
f rom S is a successor of  every particle from P, and vice versa. 

Till now we have labeled successor and predecessor classes by one of 
the particular particles whose successor or predecessors they are: St, I t .  
Now we label the distinct successor and predecessor classes with integers 
i , j :  S~,P j in such a way that a successor class S and a predecessor class P 
receive the same label i if  and only if they correspond to one another in the 
above sense. The labels i, j are called flavor labels. Owing to the one-to-one 
correspondence between successor and predecessor classes the indices i a n d j  
range over the same index set. 
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Given any successor class S~, and an arbi t rary particle t ~  S~; then 
since, as we saw, (~, t) is always an interacting channel, we have f ~ P~. 
And the converse statement is also true. Thus  we see that  ff~ = St, S~ = P~. 

5.5. The Flavor Classes (i, j)  

Regard any particle t. I t  is in a definite predecessor class Pj, and in a 
definite successor class S~. Then  we say that  t is in the flavor class ( i , j ) :  
t ~ ( i , j ) .  Obviously, UJ ( i , j )  = S~, and L.], ( i , j )  = Pj ,  and ( i , j )  = S~ n Pi. 

The  way we have labeled the S ' s  and P ' s  correspondingly,  we see easily 
tha t  if  t ~ ( i , j ) ,  and t '  ~ (k, l), then (t, t ' )  is an interacting channel  if  and 
only i f  j = k. And  similarly for  an ordered channel (tl, t2 . . . .  , tin), with 
tl ~ (ix, j~), t2 E (/2, j2) . . . . .  tm ~ (ira, j~), the condit ions i2 = J l , /3  = j2 , .  �9 
i~ = j~+ 1 are sufficient and necessary for  it to be interacting. Tha t  they are 
necessary is obvious;  that  they are sufficient follows f rom the fact that  every 
two-particle subchannel is interacting, which, as we saw, guarantees that  
the whole channel is. 

Since, as we saw, S~ = P~,/~ = S~, it is clear that  if  t ( i , j ) ,  then ~ ~ (j,  i). 
I f  one assumes, as we have done, tha t  there are no channel  selection 

rules except for  order  selection rules, then the ampl i tude  

t 3 

is nonzero (as a function) i f  and  only i f  ] l  = i2,]2 = ia . . . .  ,]~ = ii. 
We now define a flavor classification (i, j )  for  interacting channels, too :  

an (interacting) ordered channel r = (t~ . . . . .  t~) is said to be in the ( i , j )  
sector  if  and only if il = i , j , ,  = j .  This set o f  ordered ( i , j )  channels is 
indeed an (ordered) sector in the sense o f  Section 4, since every (i, j )  channel 
was just seen to communicate  with every other  (i, j )  channel, but  with no 
other  ( i ' , j ' )  channel. 

It  is easy to see that,  owing to the pole conjecture, particles o f  every 
class ( i l j )  actually exist. 

5.6. Flavor-Labeled Process Graphs and Quark Diagrams; the OZI Rule 

Graphically,  a particle is represented as 

,I 
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I f  t is in (i, j ) ,  then as we saw, i labels the predecessor class a n d j  the successor 
class of  t; graphically we represent this as 

1 

Since a process graph like 

only corresponds to a nonzero amplitude i f j  = k, l = m, n = p, and q = i, 
we see that in any nonzero ordered amplitude we can consistently flavor-label 
the edges of  the process graph: 

i 

t 2 g t 3 

With the alternative representation of  particles 

! ' 
this process graph looks like 

t~ t 4 

t t k 

which we recognize as a conventional mesonic quark diagram. And we see 
that an ordered amplitude is only nonzero if it can be written in this way as 
a connected flavor-labeled quark diagram; this is the OZI rule, which is 
thus automatically obeyed by the OSM. 

So we have demonstrated that sequentially ordered amplitudes can, in 
and of  themselves, be considered as mesonic quark-diagram amplitudes, 
and the external particles be identified as nonexotic mesons. This identi- 
fication will be confirmed when we assign internal quantum numbers 
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to the particles, and find them to obey the usual mesonic pattern. The 
edges of process graphs are found to correspond to the quark lines of  quark 
diagrams. 

So far we have not made any statement about the number of different 
flavors; it could be one (no order selection rules), several, or infinite. Ex- 
perimentally, we need at least five flavors to understand the present data, 
but the number is growing, and there seems no a priori reason to exclude 
even the possibility of infinitely many flavors, "unfrozen" at ever higher 
energies. Using just the simple considerations that we have, there is no way 
to theoretically determine the number of flavors. To achieve this, a detailed 
dynamical bootstrap analysis would be necessary. 

We would like to stress that although flavor labeling is useful, it is not 
an indispensable part of the formalism of ordered SMT; we were able to 
construct the whole theory in Section 3 without ever mentioning flavor. 
The flavor information is implicitly contained in the particles. In this respect 
the situation resembles that of  the usual SMT, where IQNs are similarly 
useful but formally dispensable. 

5.7. The Canonical Internal Quantum Numbers 

In a nonzero ordered amplitude, every edge that starts out from a 
particle with a successor index i has to end up in a particle with the predeces- 
sor index i. Hence for every flavor i, the number of times it occurs as a suc- 
cessor index minus the number of times it occurs as a predecessor index 
must be zero for every nonzero ordered amplitude. 

For any particle of set of  particles we denote the number of times that 
a flavor i occurs as a successor index minus the number of times it occurs as 
a predecessor index (i.e., the number of i edges leaving the set minus the 
number of i edges entering it) the canonical additive internal quantum number 
Q~*), or simply the canonical IQN. Thus for every flavor index i there is a 
corresponding QC,~. As we just saw, the Q~*)'s are conserved in ordered 
amplitudes. 

By definition Q~*~ has the same value for all particles in the same flavor 
class (j, k); it is a class property. Specifically, Q~(j, k) = ~ - ~,j. The same 
formula also holds true for ordered channels in the class (j, k). Thus for 
particles and ordered channels Q(~) can only take on the values - 1, 0, + 1. 
For  nonadjacent sets of particles it can take on any integer value. 

We may, if we wish, attribute a "charge" Q(~(j) = 3,j to every edge 
("the j edge carries the charge Q~i),,), although nothing is gained by that 
terminology. Then Q(k)(i,j)= Q(~)(i)- Q(1~(j). These charges Q~)(j) can 
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be changed by an arbitrary additive constant Q~) without modifying the 
Q"~ assignments of  particles. 

Since every particle or set of  particles has an equal number of  edges 
entering it and leaving it, we have ~ Q<~ = 0 for all k, l. [In Part Two, 
for generalized order, this will no longer be true: there :~, Q<~> - 3B, where 
B is the baryon number.] For  example, we have one less nontrivial conserva- 
tion law than flavors (e.g., for a one-flavor theory, there is no nontrivial 
conservation law). We may therefore eliminate one of the Q(*>'s as superfluous. 
I f  we introduce the conventional names for the five flavors observed till 
now, namely, u, d, s, c, b, then the reduction from five to four additive 
IQNs may be carried out by eliminating Q(~ and Q<a> and replacing them by 
the quantity Q(e) _~ _�89 + ~Q~> _ �89 + ~Qr + �89 ; t h e  quan- 
tity Q<el) is called the electric charge; it is defined in this particular way for 
reasons that are outside the scope of a pure strong-interaction approach. 
Thus we remain with a set of conserved quantum numbers Q~el) Q<s), Q~), Q<b>, 
that coincides exactly with the usual electric charge, strangeness, charm and 
beauty, etc. 

5.8. The Significance of the Canonical IQNs for the Physical S M  

We saw in Section 4 that the simplest way to formulate the sector 
selection rules of the physical, unordered SM is to define a set of additive 
and/or multiplicative quantum numbers for each particle; the conservation 
of  these quantum numbers then expresses the sector selection rules. 

Similarly, for the order selection rules of the ordered SM, the canonical 
formalism was found to be one in which we defined flavor labels for the two 
edges attached to every particle; the order selection rules were then expressed 
by demanding that the two flavor labels thus attached to the two ends of  an 
edge are equal. Since we assumed that order selection rules were the only 
channel selection rules of the ordered SM, the flavor labels are sufficient to 
express all channel selection rules. 

We also found that the order selection rules implied the existence of 
a set of  canonical additive conserved quantum numbers Q~, one for each 
flavor. But the converse is not true: merely postulating Q(*~ conservation 
does not imply the order selection rules, but merely a fraction of their 
statement. For  one thing, additive conservation rules are oblivious to particle 
order: they distinguish only between different sets of external particles, but 
not between different orders of one and the same set. 

So the best one could hope for would be that Q"~ conservation would 
allow us to determine for which sets of particles there is any order for which 
the ordered amplitude is nonzero. 
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But the fact is that QC~) conservation does not even accomplish that 
completely. For particle sets like A ~ (i, j) ,  B ~ (j, i), c ~ (k, l), D ~ (l, k), or, 
e.g., A ~( i , j ) ,  B e ( j ,  k), C e ( k ,  i), D ~(I, l), E ~ ( m ,  n), F ~ ( n , p ) ,  G ~(p,  rn) 
that can be drawn as several disconnected process graphs but not as one 
single one, we know that all ordered amplitudes are zero; and yet they are 
allowed by Q(~) conservation. 

But if QC~) conservation is so ineffective in describing the selection rules 
of ordered amplitudes, then why do we bother to introduce the Q(~)'s at all? 
The answer is that as long as we remain in the domain of ordered amplitudes, 
there is no advantage to be gained by their introduction. 

It is only when we begin to construct the physical SM from ordered 
amplitudes by means of the topological expansion that the real significance 
of the Q(~)'s emerges. 

The first step of this construction yields the so-called planar amplitudes 
(an unordered approximation to the physical amplitude obtained by adding 
all ordered amplitudes with a given set of external particles, as described in 
Section 6). Here the reason for the introduction of the Q(~)'s does not become 
clear yet, since, by their definition these planar amplitudes are nonzero if 
and only if the particles can be arranged in any order such that the corre- 
sponding (connected) process graph can be consistently flavor-labeled (OZI 
rule); thus the less restrictive Q(~) conservation rules are redundant (since 
they are necessary but not sufficient). 

But already the next higher term of the topological expansion, the 
cylinder amplitude, breaks the OZI rule, as the example 

i (,1~, k) C j ' , i ) ~  
( ] , i )  (i,,g) ( i ,~)  ' ~ ' " '  

I 

i .g 

demonstrates, but the Q(*)'s are still conserved in this term, and indeed in 
all terms of the topological expansion, because a quark line of a given flavor 
starting out on an external particle has to end up on an external particle, 
still with the same flavor. Thus, for the physical amplitudes, all that remains 
of the order selection rules are the Q(*) conservation laws. This, then, is the 
true significance of the Q(*)'s: the sector selection rules to which their con- 
servation corresponds are the vestige, at the physical level, of the order 
selection rules at the ordered level. And, on the other hand, owing to our 
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postulate that there be no selection rules other than order selection rules 
for the ordered S matrix, the Q")'s are the only conserved internal quantum 
numbers. 

5.9. And If There Were Additional Selection Rules? 

Although we have found our postulate--that  there be no selection rules 
besides order selection rules for the ordered SM--completely satisfactory, 
we were nevertheless interested in the consequences of  relaxing that postulate. 
Since the question appears largely academic, however, we just present a 
summary of  results. 

The methods of  Section 4 can be brought to bear on the problem in 
somewhat modified form. I f  ~- = (tl, t2 . . . . .  t,~), ~" = (t;, t~ . . . .  , t,D are two 
ordered channels, then r o ~-' is defined to be the ordered channel (h, t2, �9 �9 
tm, t~ , . . . ,  t~). This operation is now obviously not commutative. Since r o z' 
need not be interacting even if ~- and ~-' are both interacting, we cannot in 
general define the sector group by [~] o It'] = [r o ~-'], since if  ~- o ~-' is not 
interacting, then [~ o ~-'] is not defined. But if we restrict ourselves to particles 
(and hence also ordered channels) from the flavor class (i, i), for any flavor i, 
then the group multiplication is well defined, and the sector group [of (i, i) 
channels] can be introduced as in Section 4. However, it need not be Abelian. 
One can show that the sector group of  (i, i) channels is isomorphic to the 
sector group of  ( j , j )  channels for any two flavors i,Z And furthermore, 
knowledge of that group structure implies a complete knowledge of the 
communication structure of the ordered SM. 

If  the (i, i) sector group is trivial, then we are back to our postulate: 
there are no selection rules except for order selection rules. If  it is not trivial, 
but at least Abelian, then that implies the existence of further conserved 
internal quantum numbers (additive or multiplicative) besides the canonical 
ones. These additional additive IQNs have the property that they adopt 
every integer value from - o o  to +oo for every class of particles (i, j)  
separately. To prove this, we require the pole conjecture. Any additive 
conserved [QN that is a function of  the (i,j) labels of  the particle alone, is 
a linear combination of canonical Q")'s. I f  we make the assumption that all 
(i, i) particles are self-conjugate, then besides the canonical IQNs only 
multiplicative IQNs of  order 2 are permitted. 

If  the (i, i) sector group is non-Abelian, then we are faced with a new 
kind of  selection rule that cannot be expressed as additive or multiplicative 
IQN conservation (and also not as an order selection rule). For example, 
the ordered channels (t, t') and (t', t) might both be (i, i) channels and yet 
not communicate. 
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5.10. Internal Symmetries and Multiplet Structure; I-Spin Degeneracy 

So far, we have not regarded internal symmetries, and there seemed 
to be no intrinsic reason to introduce them; possibly, a more in-depth study 
of  ordered SMT will turn up such reasons. But meanwhile we know em- 
pirically that the flavors are related to one another by a "broken"  SU(n) 
symmetry group, the SU(2) subgroup of which, relating u and d, is exact 
up to within the order of  electromagnetic corrections. Therefore, we in- 
troduce these symmetries by postulate in a manner formally identical to 
that of quark models. The fact that these symmetries have to be introduced 
by postulate rather than follow from the inner logic of the theory is common 
to the quark model and the ordered SM approach; but in the former this 
ad hoc approach seems unavoidable, whereas a bootstrap treatment of  the 
ordered SM might conceivably yield a derivation of internal symmetries 
together with the number of flavors based on consistency requirements. 

The postulate of exact SU(2), or, respectively, broken SU(n), yields 
exactly the same predictions about the multiplet structure of  the spectrum 
as it does in the usual framework; we need not elaborate on it here. 

SU(n) symmetry as postulated above is "global" in the sense that it 
demands the equality of two ordered amplitudes related by an SU(n) 
transformation T that acts on every particle of  the amplitude: e.g., 

T T 
A I ~ A  6 Aj ~ A 6 

- -  T T 

A5 AT ~ A  T 
A 3 A 4 ~ # 

where AT is the state obtained from A~ by application of  T. But we now 
impose a more stringent symmetry condition which is "local" in the sense 
that it demands the equality of two ordered amplitudes related by a trans- 
formation that affects the flavor of one single edge. For  example, we have 

i6 i 6 

A 2 ( '  A ~  - -  A 5 \ , z ; i j  A~ 77 �9 A' 2 - -  
A3 A 3 A 4 

where ~7 is a phase-factor, and A[ and A~ are the well-defined particles that 
A1 and A2 are transformed into when the flavor il is transformed into the 
flavor if. Note that A3, A~, As, Ae are not affected by this transformation, 
which can thus not be considered as a usual symmetry transformation acting 
on initial and final states as a whole. We see that this "local" symmetry 
implies the usual "global" SU(n) symmetry but not vice versa. 

We now make a few remarks about / -spin degeneracy. SU(2) symmetry 
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results in degenerate /-spin multiplets of particles, corresponding to ir- 
reducible representations of SU(2), andcharacterized by a value of L 
SU(2) does not demand the degeneracy of different multiplets. For the 
physical SM general principles indeed prohibit exact /-spin degeneracy; 
since it would entail that two particles from the same sector (i.e., with all 
additive IQNs equal), but differing in the value of I, would be degenerate. 
But in Section 4 we observed that two particles from the same sector cannot 
be degenerate. 

For the ordered SM, the situation is different. Here, the "local" sym- 
metry demands that, e.g., for every particle t~p from the flavor class (p, p) 
there exist a set of degenerate particles tp, in (p, n), t,p in (n, p), and t,,  in 
(n, n). Now, in the ordered case, tpp and t,,  are in different sectors (OZI 
rule) and so there is no obstacle to their being degenerate. 

We need not regard t~ and t,p further since, having distinct values of 
canonical IQNs, in particular electric charge, they will continue to belong to 
different sectors even when we pass by the topological expansion to the 
corresponding physical particles. But t~p and t , , ,  having the same set of 
canonical IQNs, begin to communicate already at the cylinder level of the 
topological expansion, and so we know that the degeneracy must be broken 
there. As always in the case of a degeneracy, we can choose the basis in an 
arbitrary way. At the ordered level, the basis {tpp, t,~} is appropriate for most 
purposes, in particular to express the order selection rules. But if we are 
interested in the basis that corresponds to the physical particles, then the 
basis 

21/2 , 

is appropriate, because it is these linear combinations that are unmixed by 
SU(2) and therefore correspond to the physical particles, with I spin 1 and 
0, respectively. In terms of this basis the degeneracy is expressed as/-spin 
degeneracy. 

6. THE PLANAR S-MATRIX APPROXIMATION 

6.1. The Elimination of Process Order: The PSA 
and the Topological Expansion 

We have already mentioned that the ordered amplitudes introduced in 
this work do not represent directly measurable quantities, since they refer, 
besides to the individual particle parameters t, p,/x, which are measurable, 
also to the order between them, which is not. 
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In order to pass from ordered to physical amplitudes, we have to 
somehow eliminate, "average out," the order. 

This corresponds to passing from the statistical treatment of a level 
of description characterized by order (namely, ordered SMT) to the statistical 
treatment of the usual, "physical" level of description (namely, the usual 
SMT), which does not contain the concept of order. 

How to make this transition is not yet known in all generality; it 
constitutes a novel problem. The topological expansion of DTU, which, 
as mentioned in Section 1, grew out of dual perturbation theory, is an 
attempt to solve just this problem. But it suffers from basic theoretical 
defects, and cannot be regarded as the final solution. Nevertheless, it appears 
to contain correct elements, and has achieved remarkable phenomenological 
successes. We may therefore hope to draw our inspiration at least in part 
from the topological expansion when we attack the problem systematically 
in a future work. 

In this section, we merely regard the lowest-order term of the topological 
expansion, which we call the PSA (planar S-matrix approximation). It 
consists of approximating a physical amplitude T(A1, A2,. �9 A,) 

A 3 A 4 

by the sum of all (n - 1) different ordered amplitudes with the "same" 
set of ordered particles {A1, A2 . . . .  , A~} in all different cyclic orderings. Thus 
the PSA is an unordered amplitude defined in terms of the particles of the 
ordered SM spectrum. 

Why did we put "same" in quotation marks? The reason is that we 
know from DTU that higher terms of the topological expansion shift the 
Regge trajectories and couplings. If the total shift resulting from the 
topological expansion is not too large, and, above all, if no poles disappear 
and no new poles are created at any (finite) step of the topological expansion, 
so that we can keep track of the individual poles in the iterative progression 
from the ordered to the physical SM, then there is a clear correspondence 
between ordered and physical particles. It is this presumed correspondence 
we refer to when we talk about the "same" particles; without it we could 
not even compare the PSA and the physical SM. 

The prescription for obtaining the PSA by adding all the ordered 
amplitudes with the given set of external particles is the most straight- 
forward way of "averaging out" the particle order. It corresponds to the 
quantum mechanical rule according to which the amplitude of a process is 
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equal to the sum of amplitudes corresponding to the various paths the 
process can take. In this case process order plays the role of path. 

As plausible as this prescription for eliminating process order may 
seem, it is only approximately correct in the numerical sense, and the path 
analogy is probably conceptually inappropriate. The main defect is the 
demonstrable lack of unitarity of the PSA. On the other hand, the 
unitarity-violating terms can be shown to be relatively small, and the PSA 
obeys many of the general SM properties such as Poincar6 invariance, 
macrocausality, and normal analytic structure, the independence property 
and cluster decomposition, pole factorization, asymptotic bounds, Hermitian 
analyticity, Bose statistics, etc. In addition, it has the specific duality and 
quark properties that it inherits from the ordered amplitudes by virtue of its 
linear definition in terms of them: weak exchange degeneracy, /-spin de- 
generacy, absence of Regge cuts and long-range correlations in rapidity, 
OZI rule, all of which are found to be approximately valid experimentally; 
and of course the quark-model mesonic spectrum derived in Section 5. These 
features let us expect that the PSA represents a reasonably good approxima- 
tion to the physical SM, and hence a good starting point for the topological 
expansion. 

6.2. Some Properties of the PSA 

Definition and Notation. We denote the planar amplitudes by 

A 3 A 4 

+ + 

A 2 A 4 A~ A a 

+ + + 

A3 A4 A 4 A 2 A 4 A~ 

It is obvious ~om this definition that planar amplitudes are unordered, 
since they are symmetrized with respect to particle order. 

So according to our definition 

At Az A z A 3 
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When referring to a particular channel, say 1, 2--> 3, 4, we write the 
above amplitude as 

m 

I 

with the usual conventions about positive energy, etc. 
Cluster Decomposition and the Planar SM. The planar SM is defined 

in terms of planar amplitudes by the usual (unordered) cluster decomposition 
equat ions ,  e.g. ,  

ZZ]E ~ _~ A, A 4 A I A 3 ~_ AI A 3 + Al ; A3 + ; 

A 2 A4 A 2 A4 A z A4 Az A 3 

With this definition, the independence property for planar amplitudes, 
namely, that they tend to zero when a subset of particles is translated to 
infinity, is converted into the independence property of the planar SM: 

T 

Lorentz lnvariance. That planar amplitudes are Poincar6 invariant 
follows trivially from the corresponding property of the ordered amplitudes. 

Analyticity. Planar amplitudes are analytic everywhere in the physical 
region except on positive-a Landau surfaces; this  is because they have all 
the singularities that any of the ordered amplitudes (whose sum they are) 
have. Its discontinuities in "exotic" channels will be zero. 

Crossing. Crossing for planar amplitudes follows from their very 
definition. But the basis for that definition, the existence of the (ordered) 
functions 

; < -  
depends on the ordered crossing property of ordered amplitudes. 

Spectrum. By its definition, the PSA has the same particle spectrum 
as the ordered SM, namely nonexotic mesons. We saw in Section 5 that 
the internal quantum numbers assigned to these mesons are just those 
predicted by the quark model. 

Pole Faetorization. This is usually a direct consequence of unitarity; 
indeed it could be called one-particle unitarity. But although unitarity does 
not hold for the PSA, pole factorization does. This result is of crucial 
importance since it allows a consistent SM interpretation of the PSA. And 
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to the extent that planar amplitudes are resonance dominated, pole fac- 
torization alone, without any other considerations, implies approximate 
unitarity. 

To show pole factorization, we regard a planar amplitude 

at one of its poles X. Now 

is the sum of all ordered amplitudes with the set of external particles 
occurring in the channels i and f. Amongst those will be ordered amplitudes 
where all initial particles are adjacent (ordered transition amplitudes) and 
others, where initial and final particles are interspersed. The latter do not 
contribute to the pole in question, and can therefore be ignored in this 
context. 

Hence near the pole 

o o, 
O~ Of 

where O~ stands for any ordered initial channel consisting of the same particles 
as i (but in different order); and O r analogously. Only those channels 0 
(Oi) for which 

contribute to the above sum, so let us restrict the sum to these. Owing to 
the pole factorization or ordered amplitudes, the pole residue is then equal to 

res, i . ~ ~  f = z  z o >-x . 
0 i Of 

: (z  (z x---O=o,) 
0 i Of 

= i ~ x  �9 •  

which is nothing but pole factorization. 
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Other SM Properties. Hermitian analyticity and the Froissart bound 
of the PSA follow immediately from their validity for ordered amplitudes. 
Bose statistics arises from the full symmetrization of the particle order due 
to summation over all such orders; this leads to a permutation symmetry 
of the PSA analogous to that of the physical SM; and as we saw in Section 2, 
it is this permutation symmetry that gives rise to Bose statistics. 

Duality Properties. The/-spin degeneracy and absence of Regge cuts 
and fixed j poles of the ordered amplitudes trivially entails that of planar 
amplitudes. And since the position of a Regge trajectory is certainly not 
changed by superposition, the positive and negative signature poles still 
coincide: ~.+)(t) = c~}-)(t). However, the residues fl~.+)(t) and fl}-)(t) are now 
in general distinct. This is called the weak exchange degeneracy of the PSA. 
What could conceivably happen (but does not appear to happen for mesons) 
is that one signatured trajectory could be wiped out because the correspond- 
ing residues all vanish. This may be what is happening for some baryon 
trajectories. 

OZI Rule. Obviously, a planar amplitude is nonzero only if at least 
one ordered amplitude in the sum is nonzero, i.e., may be drawn as a legal 
quark diagram. This is the usual OZI rule; it is exact for the PSA. 

C Symmetry. We noted in Section 2.4 that even if all external particles 
of an ordered amplitude are self-conjugate, this does not lead to a selection 
rule because the product of all charged conjugations need not be + 1. For 
the PSA, this is no longer true: if the product of charge conjugations is = 1, 
then every ordered amplitude in the sum cancels against the amplitude 
with opposite orientation, and so the PSA is zero. Thus the PSA obeys the 
same C-selection rule as physical amplitudes. 

Lack of Unitarity. We demonstrate with the simplest example that the 
PSA is not unitary. If 

A A' 
B ~ B '  

were unitary, then 

would, below the inelastic threshold, obey the discontinuity equation 

I 
I 

A ~ Z )  A' = A ~ A" 
B B' B B" 

i 
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On the other hand, we know from the discontinuity equations for ordered 
amplitudes that 

r I i 

A . . .- .--f '7"x~ A' A A' A B' 
..__/ P L _  = + 

B ~ B '  B ',,...LJ B' B A' 
I i i 
t I I 

I I 
I I 

+ B ~ A "  + B ~ B '  
A B' A ~ A '  

I I 
I I 

(the other two ordered amplitudes do not contribute to the discontinuity) 

+ 'B B' + 'A B' ) 

+ ( B B' + 

When we compare these two expressions for 

A ( ~ A '  
B B' 

we see that the eight terms of the latter expression cancel against eight of 
the 6 x 6 = 36 expressions of the former, leaving us with the demand that 
the sum over the 28 other unitarity products be zero if the PSA were indeed 
to be unitary. These 28 "nonplanar" products are of the type 

(products of ordered transition amplitudes with crossing intermediate lines), 
and 
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o r  

etc. (at least one of the factors is not an ordered transition amplitude). 
Although the sum of these terms is in general nonzero, and therefore 

the PSA not unitary, it can be shown that these nonplanar terms are sup- 
pressed with respect to the planar terms 

and therefore the unitarity violation of the PSA is not as serious as it might 
appear. This smallness of unitarity violation was also implied by pole 
factorization to the extent that the PSA is resonance dominated. 

Experimental Verification of Ordered SMT. We have already seen that 
a variety of duality and quark-model properties are predicted, and 
experimentally confirmed. 

Since ordered SMT provides a theoretical foundation for DTU, the 
phenomenological success of that approach also constitutes a powerful 
confirmation of the ideas presented here. Readers interested in that aspect 
are referred to Chew and Rosenzweig (1978) and the bibliography to be found 
there. 

We now turn our attention to a generalization of the concept of order 
that will allow us to broaden the scope of the theory to include all hadrons. 

6.3. Outline of Part Two 

In Section 7, we recognize the need for a generalization of the ordered 
SM scheme to include baryons and exotics, and review some of the dif- 
ficulties involved. We see why sequential order cannot accommodate baryons, 
and develop the framework of a more general particle order to achieve that. 

In Section 8, we present those concepts and facts from graph theory 
that will be required to develop the theory. 

In Section 9, consistency requirements between general principles of 
SMT and particle order are exploited to determine the specific form of the 
theory. 

In Section 10, we review various properties of the general ordered SM, 
and the axiomatic structure of the theory. Also, a planar approximation to 
the physical SM is proposed. 

Section 11 brings the conclusion, and an outlook on possible further 
developments. 

In an epilogue ("Philosophical Postscript") we speculate about a possible 
interpretation of particle order and some of the broader consequences that 
might follow from this concept. 


